일반적으로 EEG 신호는 Alpha파, Beta파, Theta파, Delta파로 구분할 수 있다. Alpha파는 사람에게 있어서 가장 우세한 파형으로써 정신적으로 안정 시 잘 나타나는 뇌파이며, Beta파는 흥분 시 우세하게 나타난다. 본 연구에서는 EEG의 안정 상태를 정량적으로 나타내기 위해 웨이브렛 변환과 파워 스펙트럼 분석을 이용하였다. EEG신호를 웨이브렛 변환을 통해 Alpha파와 Beta파만 검출하여 고속 푸리에 변환을 이용 Alpha파와 Beta파의 파워 스펙트럼을 구하였다. 이후 Beta파의 파워 스펙트럼에 대한 Alpha파의 파워 스펙트럼 비율로 정의되는 상대적 안정상태비(Stable State Ratio)를 계산하였다. 그 결과 피험자가 정상적인 활동 상태에서 정신적으로 편안한 안정 상태에 이르기까지 5분 이내가 16%, $5{\sim}10$분 사이가 9%, 그리고 최소 10분 이상의 시간이 소요되는 피험자집단이 총 69%로 우세하게 나타났다.
The subject of this paper is to recognize the stable state of EEG using wavelet transform and power spectrum analysis. An alpha wave, showed in stable state, is dominant wave for a human EEG and a beta wave displayed excited state. We decomposed EEG signal into an alpha wave and a beta wave in the process of wavelet transform. And we calculated each power spectrum of EEG signal, an alpha wave and a beta wave using Fast Fourier Transform. We recognized the stable state by making a comparison between power spectrum ratios respectively.
Let ${\mathcal{L}}_2=(-{\Delta})^2+V^2$ be the $Schr{\ddot{o}}dinger$ type operator, where nonnegative potential V belongs to the reverse $H{\ddot{o}}lder$ class $RH_s$, s > n/2. In this paper, we consider the operator $T_{{\alpha},{\beta}}=V^{2{\alpha}}{\mathcal{L}}^{-{\beta}}_2$ and its conjugate $T^*_{{\alpha},{\beta}}$, where $0<{\alpha}{\leq}{\beta}{\leq}1$. We establish the $(L^p,\;L^q)$-boundedness of operator $T_{{\alpha},{\beta}}$ and $T^*_{{\alpha},{\beta}}$, respectively, we also show that $T_{{\alpha},{\beta}}$ is bounded from Hardy type space $H^1_{L_2}({\mathbb{R}}^n)$ into $L^{p_2}({\mathbb{R}}^n)$ and $T^*_{{\alpha},{\beta}}$ is bounded from $L^{p_1}({\mathbb{R}}^n)$ into BMO type space $BMO_{{\mathcal{L}}1}({\mathbb{R}}^n)$, where $p_1={\frac{n}{4({\beta}-{\alpha})}}$, $p_2={\frac{n}{n-4({\beta}-{\alpha})}}$.
Let F and G denote the distribution functions of the failure times and the censoring variables in a random censorship model. Susarla and Van Ryzin(1978) verified consistency of $F_{\alpha}$, he NPBE of F with respect to the Dirichlet process prior D($\alpha$), in which they assumed F and G are continuous. Assuming that A, the cumulative hazard function, is distributed according to a beta process with parameters c, $\alpha$, Hjort(1990) obtained the Bayes estimator $A_{c,\alpha}$ of A under a squared error loss function. By the theory of product-integral developed by Gill and Johansen(1990), the Bayes estimator $F_{c,\alpha}$ is recovered from $A_{c,\alpha}$. Continuity assumption on F and G is removed in our proof of the consistency of $A_{c,\alpha}$ and $F_{c,\alpha}$. Our result extends Susarla and Van Ryzin(1978) since a particular transform of a beta process is a Dirichlet process and the class of beta processes forms a much larger class than the class of Dirichlet processes.
Rhizopus nigricans produces 11.alpha.-hydroxyprogesternoe with a unidentified byproduct, which is hardly separated. Results of chromatography, IR and NMR spectroscopy identified the byproduct to be 11.alpha.-hydroxy-allopregnane-3,20-dione. R. nigricans was found to transform progesternoe into a monoform intermediate, 11.alpha.-hydroxyprogesterone, from which 11.alpha.-hydroxy-allopregnane-3,20-dione and 6.betha., 11.alpha. - dihydroxyprogesterone were formed respectively by 5.alpha.-reduction and 6.betha.-hydroxylation.
본 논문에서는 4${\times}$4 블록 절단부호화를 근사화 파라메타 {($Y_{\alpha},\;Y_{\beta}),\;P_{{\beta}/{\beta}}$}에 의한 블록 근사화 및 그 파라메타 부호화의 두 과정으로 나누고, 각 과정에 대해 연구하였다. 제안된 방식은 일단 블록을 평탄 및 에지블록으로 분류하여 평탄 블록은 한개의 근사화 레벨 Y로만 근사화하도록 하였다. 에지블록의 라벨 평면 $P_{{\beta}/{\beta}}$는 준비된 32개의 표준 패턴을 이용하여 근사화하도록 노력하였고, 근사화가 어려운 것은 그대로 전송하였으며, 근사화 레벨 $Y_{\alpha},\;Y_{\beta}$는 이미 전송된 라벨 평면을 이용하여 예측 양자화한 후 Huffman 부호화하도록 하였다. 본 방식의 성능은 배경부분에서의 표현에는 약간의 문제가 있는 것으로 나타나지만 SNR 면에서는 복잡한 변환 부호화 방식보다도 좋은 결과를 보이며, 특히 에지가 잘 보존되었다.
We consider the Schrödinger type operator k = (-∆)k+Vk on ℝn(n ≥ 2k + 1), where k = 1, 2 and the nonnegative potential V belongs to the reverse Hölder class RHs with n/2 < s < n. In this paper, we establish the (Lp, Lq)-boundedness of the higher order Riesz transform T, = V2∇2-2 (0 ≤ ≤ 1/2 < ≤ 1, - ≥ 1/2) and its adjoint operator T∗, respectively. We show that T, is bounded from Hardy type space $H^1_{\mathcal{L}_2}({\mathbb{R}}_n)$ into Lp2 (ℝn) and T∗, is bounded from p1 (ℝn) into BMO type space $BMO_{\mathcal{L}_1}$ (ℝn) when - > 1/2, where $p_1={\frac{n}{4({\beta}-{\alpha})-2}}$, $p_2={\frac{n}{n-4({\beta}-{\alpha})+2}}$. Moreover, we prove that T, is bounded from $BMO_{\mathcal{L}_1}({\mathbb{R}}_n)$ to itself when - = 1/2.
We give a necessary and sufficient condition that a square integrable functional F(x) on Yeh-Wiener space has an integral transform $\hat{F}_{{\alpha},{\beta}}F(x)$ which is also square integrable. This extends the result by Kim and Skoug for functional F(x) in $L_2(C_0[0,T])$.
The nutritional value of feed proteins and their utilization by livestock are related not only to the chemical composition but also to the structure of feed proteins, but few studies thus far have investigated the relationship between the structure of feed proteins and their solubility as well as digestibility in monogastric animals. To address this question we analyzed soybean meal, fish meal, corn distiller's dried grains with solubles, corn gluten meal, and feather meal by Fourier transform infrared (FTIR) spectroscopy to determine the protein molecular spectral band characteristics for amides I and II as well as ${\alpha}$-helices and ${\beta}$-sheets and their ratios. Protein solubility and in vitro digestibility were measured with the Kjeldahl method using 0.2% KOH solution and the pepsin-pancreatin two-step enzymatic method, respectively. We found that all measured spectral band intensities (height and area) of feed proteins were correlated with their the in vitro digestibility and solubility ($p{\leq}0.003$); moreover, the relatively quantitative amounts of ${\alpha}$-helices, random coils, and ${\alpha}$-helix to ${\beta}$-sheet ratio in protein secondary structures were positively correlated with protein in vitro digestibility and solubility ($p{\leq}0.004$). On the other hand, the percentage of ${\beta}$-sheet structures was negatively correlated with protein in vitro digestibility (p<0.001) and solubility (p = 0.002). These results demonstrate that the molecular structure characteristics of feed proteins are closely related to their in vitro digestibility at 28 h and solubility. Furthermore, the ${\alpha}$-helix-to-${\beta}$-sheet ratio can be used to predict the nutritional value of feed proteins.
The principal aim of the paper is to investigate new integral expression $${\int}_0^{\infty}x^{s+1}e^{-{\sigma}x^2}L_m^{(\gamma,\delta)}\;({\zeta};{\sigma}x^2)\;L_n^{(\alpha,\beta)}\;({\xi};{\sigma}x^2)\;J_s\;(xy)\;dx$$, where $y$ is a positive real number; $\sigma$, $\zeta$ and $\xi$ are complex numbers with positive real parts; $s$, $\alpha$, $\beta$, $\gamma$ and $\delta$ are complex numbers whose real parts are greater than -1; $J_n(x)$ is Bessel function and $L_n^{(\alpha,\beta)}$ (${\gamma};x$) is generalized Laguerre polynomials. Some integral formulas have been obtained. The Maple implementation has also been examined.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.