• Title/Summary/Keyword: ${\alpha}$-, ${\beta}$-, ${\gamma}$- duals

Search Result 5, Processing Time 0.02 seconds

On Some Binomial Difference Sequence Spaces

  • Meng, Jian;Song, Meimei
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.4
    • /
    • pp.631-640
    • /
    • 2017
  • The aim of this paper is to introduce the binomial sequence spaces $b_0^{r,s}(\nabla)$, $b_c^{r,s}(\nabla)$ and $b_{\infty}^{r,s}(\nabla)$ by combining the binomial transformation and difference operator. We prove that these spaces are linearly isomorphic to the spaces $c_0$, c and ${\ell}_{\infty}$, respectively. Furthermore, we compute the Schauder bases and the ${\alpha}-$, ${\beta}-$ and ${\gamma}-duals$ of these sequence spaces.

Some Paranormed Difference Sequence Spaces Derived by Using Generalized Means

  • MANNA, ATANU;MAJI, AMIT;SRIVASTAVA, PARMESHWARY DAYAL
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.4
    • /
    • pp.909-931
    • /
    • 2015
  • This paper presents some new paranormed sequence spaces $X(r,s,t,p;{\Delta})$ where $X{\in}\{l_{\infty}(p),c(p),c_0(p),l(p)\}$ defined by using generalized means and difference operator. It is shown that these are complete linear metric spaces under suitable paranorms. Furthermore, the ${\alpha}$-, ${\beta}$-, ${\gamma}$-duals of these sequence spaces are computed and also obtained necessary and sufficient conditions for some matrix transformations from $X(r,s,t,p;{\Delta})$ to X. Finally, it is proved that the sequence space $l(r,s,t,p;{\Delta})$ is rotund when $p_n$ > 1 for all n and has the Kadec-Klee property.

LINEAR ISOMORPHIC EULER FRACTIONAL DIFFERENCE SEQUENCE SPACES AND THEIR TOEPLITZ DUALS

  • RAJ, KULDIP;AIYUB, M.;SAINI, KAVITA
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.657-668
    • /
    • 2022
  • In the present paper we introduce and study Euler sequence spaces of fractional difference and backward difference operators. We make an effort to prove that these spaces are BK-spaces and linearly isomorphic. Further, Schauder basis for Euler fractional difference sequence spaces $e^{\varsigma}_{0,p}({\Delta}^{(\tilde{\beta})},\;{\nabla}^m)$ and $e^{\varsigma}_{c,p}({\Delta}^{(\tilde{\beta})},\;{\nabla}^m)$ are also elaborate. In addition to this, we determine the 𝛼-, 𝛽- and 𝛾- duals of these spaces.

DOMAIN OF EULER-TOTIENT MATRIX OPERATOR IN THE SPACE 𝓛p

  • Demiriz, Serkan;Erdem, Sezer
    • Korean Journal of Mathematics
    • /
    • v.28 no.2
    • /
    • pp.361-378
    • /
    • 2020
  • The most apparent aspect of the present study is to introduce a new sequence space 𝚽(𝓛p) derived by double Euler-Totient matrix operator. We examine its topological and algebraic properties and give an inclusion relation. In addition to those, the α-, β(bp)- and γ-duals of the space 𝚽(𝓛p) are determined and finally, some 4-dimensional matrix mapping classes related to this space are characterized.

ON SEQUENCE SPACES DEFINED BY THE DOMAIN OF TRIBONACCI MATRIX IN c0 AND c

  • Yaying, Taja;Kara, Merve Ilkhan
    • Korean Journal of Mathematics
    • /
    • v.29 no.1
    • /
    • pp.25-40
    • /
    • 2021
  • In this article we introduce tribonacci sequence spaces c0(T) and c(T) derived by the domain of a newly defined regular tribonacci matrix T. We give some topological properties, inclusion relations, obtain the Schauder basis and determine ��-, ��- and ��- duals of the spaces c0(T) and c(T). We characterize certain matrix classes (c0(T), Y) and (c(T), Y), where Y is any of the spaces c0, c or ℓ∞. Finally, using Hausdorff measure of non-compactness we characterize certain class of compact operators on the space c0(T).