Browse > Article
http://dx.doi.org/10.11568/kjm.2021.29.1.25

ON SEQUENCE SPACES DEFINED BY THE DOMAIN OF TRIBONACCI MATRIX IN c0 AND c  

Yaying, Taja (Department of Mathematics, Dera Natung Government College)
Kara, Merve Ilkhan (Department of Mathematics, Duzce University)
Publication Information
Korean Journal of Mathematics / v.29, no.1, 2021 , pp. 25-40 More about this Journal
Abstract
In this article we introduce tribonacci sequence spaces c0(T) and c(T) derived by the domain of a newly defined regular tribonacci matrix T. We give some topological properties, inclusion relations, obtain the Schauder basis and determine ��-, ��- and ��- duals of the spaces c0(T) and c(T). We characterize certain matrix classes (c0(T), Y) and (c(T), Y), where Y is any of the spaces c0, c or ℓ∞. Finally, using Hausdorff measure of non-compactness we characterize certain class of compact operators on the space c0(T).
Keywords
Tribonacci sequence space; Schauder basis; ${\alpha}$-, ${\beta}$-, ${\gamma}$- duals; Matrix Transformation; Hausdorff measure of non-compactness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Yaying, B. Hazarika, M. Mursaleen, On sequence space derived by the domain of q-Cesaro matrix in ℓp space and the associated operator ideal, J. Math. Anal. Appl. 493 (1) (2021), 124453.
2 M. Mursaleen, F. Basar, B. Altay, On the Euler sequence spaces which include the spaces ℓp and ℓ II, Nonlinear Anal. 65 (3) (2006), 707-717.   DOI
3 M. Mursaleen, A.K. Noman, Compactness by the Hausdorff measure of noncompactness, Nonlinear Anal. 73 (2010), 2541-2557.   DOI
4 M. Mursaleen, A.K. Noman, The Hausdorff measure of noncompactness of matrix operator on some BK spaces, Oper. Matrices 5 (3) (2011), 473-486.   DOI
5 M. Mursaleen, A.K. Noman, Compactness of matrix operators on some new difference spaces, Linear Algebra Appl. 436 (1) (2012), 41-52.   DOI
6 M. Mursaleen, A.K. Noman, Hausdorff measure of non-compactness of certain matrix operators on the sequence spaces of generalized means, J. Math. Anal. Appl. 417 (2014), 96-111.   DOI
7 S. Pethe, Some Identities for Tribonacci sequences, Fibonacci Q. 26 (1988), 144-151.
8 H. Roopaei, Norm of Hilbert operator on sequence spaces, J. Inequal. Appl. 2020 (2020), 117.   DOI
9 T. Yaying, B. Hazarika, On sequence spaces generated by binomial difference operator of fractional order, Math. Slovaca 69 (4) (2019), 901-918.   DOI
10 T. Yaying, B. Hazarika, A. Esi, Geometric properties and compact operator on fractional Riesz difference space, Kragujevac J. Math. 47 (4) (2023), 545-566.
11 T. Yaying, B. Hazarika, S.A. Mohiuddine, M. Mursaleen, K.J. Ansari, Sequence spaces derived by the triple band generalized Fibonacci difference operator, Adv. Diff. Equ. 2020 (2020), 639.   DOI
12 M. Stieglitz, H. Tietz, Matrixtransformationen von Folgenraumen eine Ergebnisubersicht, Math. Z. 154 (1977), 1-16.   DOI
13 H. Roopaei, A study on Copson operator and its associated sequence space, J. Inequal. Appl. 2020 (2020), 120.   DOI
14 A. Scott, T. Delaney, V. Hoggatt Jr., The Tribonacci sequence, Fibonacci Q. 15 (1977), 193-200.
15 W. Spickerman, Binet's formula for the Tribonacci sequence, Fibonacci Q. 20 (1982), 118-120.
16 C.-S. Wang, On Norlund sequence spaces, Tamkang J. Math. 9 (1978), 269-274.
17 T. Yaying, B. Hazarika, On sequence spaces defined by the domain of a regular Tribonacci matrix, Math. Slovaca, 70 (3) (2020), 697-706.   DOI
18 A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies, vol. 85. Elsevier, Amsterdam, 1984.
19 C.C. Yalavigi, Properties of Tribonacci numbers, Fibonacci Q. 10 (1972), 231-246.
20 T. Yaying, A. Das, B. Hazarika, P. Baliarsingh, Compactness of binomial difference operator of fractional order and sequence spaces, Rend. Circ. Mat. Palermo Ser. II, 68 (2019), 459-476.   DOI
21 F. Basar, B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J. 55 (1) (2003), 136-147.   DOI
22 M. Basarir, E.E. Kara, On compact operators on the Riesz Bm-difference sequence space-II, Iran. J. Sci. Technol. Trans. A Sci. A3 (2012), 371-376.
23 I. Bruce, A modified Tribonacci sequence, Fibonacci Q. 22 (1984), 244-246.
24 E. Choi, Modular tribonacci Numbers by Matrix Method, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 20 (2013), 207-221.
25 B. Altay, F. Basar, Some paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math. 30 (4) (2006), 591-608.
26 B. Altay, F. Basar, M. Mursaleen, On the Euler sequence spaces which include the spaces ℓp and ℓ I, Inf. Sci. 176 (2006), 1450-1462.   DOI
27 M. Catalani, Identities for Tribonacci-related sequences, arXiv 2002, arXiv:math/0209179.
28 S. Debnath, S. Saha, Some newly defined sequence spaces using regular matrix of Fibonacci numbers, AKU J. Sci. Eng. 14 (2014), 1-3.   DOI
29 S. Demiriz, M. Ilkhan, E.E. Kara, Almost convergence and Euler totient matrix, Ann. Funct. Anal. 11 (2020), 604-616.   DOI
30 S.V. Devbhadra, Some Tribonacci Identities, Math. Today 27 (2011), 1-9.
31 S. Ercan, C.A. Bektas, Some topological and geometric properties of a new BK-space derived by using regular matrix of Fibonacci numbers, Linear Multilinear Algebra 65 (50) (2017), 909-921.   DOI
32 S. Ercan, C .A. Bektas, On new convergent difference BK-spaces, J. Comput. Anal. Appl. 23 (5) (2017), 793-801.
33 S. Ercan, C.A. Bektas, On some sequence spaces of non-absolute type, Kragujevac J. Math. 38 (2011), 195-202.
34 F.T. Howard, A Tribonacci Identity, Fibonacci Q. 39 (2001), 352-357.
35 M. Alotaibi, M. Mursaleen, B. Alamri, S.A. Mohiuddine, Compact operators on some Fibonacci difference sequence spaces, J. Inequal. Appl. 2015 (2015), 203.   DOI
36 B. Altay, F. Basar, On some Euler sequence spaces of nonabsolute type, Ukranian Math. J. 57 (2005), 1-17.   DOI
37 M. Feinberg, Fibonacci-Tribonacci, Fibonacci Q. 1 (1963), 71-74.
38 M. Ilkhan, Matrix domain of a regular matrix derived by Euler totient function in the spaces c0 and c, Mediterr. J. Math. 17 (2020), 27.   DOI
39 M. Ilkhan, E.E. Kara, A new Banach space defined by Euler totient matrix operator, Oper. Matrices 13 (2) (2019), 527-544.
40 M. Ilkhan, E.E. Kara, F. Usta, Compact operators on the Jordan totient sequence spaces, Math. Methods Appl. Sci. https://doi.org/10.1002/mma.6537.
41 M. Ilkhan, N. Simsek, E.E. Kara, A new regular infinite matrix defined by Jordan totient function and its matrix domain in ℓp, Math. Methods. Appl. Sci. (2020) https//:doi.org/10.1002/mma.6501.   DOI
42 E.E. Kara, Some topological and geometric properties of new Banach sequence spaces, J. Inequal. Appl. 2013 (2013), 38.   DOI
43 E. Malkowsky, Recent results in the theory of matrix transformations in sequence spaces, Mat. Vesnik 49 (1997), 187-196.
44 E.E. Kara, M. Ilkhan, On some Banach sequence spaces derived by a new band matrix, British J. Math. Comput. Sci. 9 (2015), 141-159.   DOI
45 E.E. Kara, M. Ilkhan, Some properties of generalized Fibonacci sequence spaces, Linear and Multilinear Algebra, 64 (11) (2016), 2208-2223.   DOI
46 E. Kilic, Tribonacci Sequences with Certain Indices and Their Sums, Ars. Comb. 86 (2008), 13-22.
47 M. Kirisci, F. Basar, Some new sequence spaces derived the domain of generalized difference matrix, Comput. Math. Appl. 60 (2010), 1299-1309.   DOI
48 T. Koshy, Fibonacci and Lucus numbers with applications, Wiley, New York (2001).
49 E. Malkowsky, V. Rakocevic, On matrix domains of triangles, Appl. Math. Comput. 189 (2007), 1146-1163.   DOI
50 E.E. Kara, M. Basarir, An application of Fibonacci numbers into infinite Toeplitz matrices, Caspian J. Math. Sci. 1 (1) (2012), 43-47.
51 E. Malkowsky, V. Rakocevic, An introduction into the theory of sequence spaces and measure of noncompactness, Zbornik radova, Matematicki inst. SANU, Belgrade, 9 (17) (2000), 143-234.