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Abstract. The aim of this paper is to introduce the binomial sequence spaces br,s0 (∇),

br,sc (∇) and br,s∞ (∇) by combining the binomial transformation and difference operator. We

prove that these spaces are linearly isomorphic to the spaces c0, c and `∞, respectively.

Furthermore, we compute the Schauder bases and the α-, β- and γ-duals of these sequence

spaces.

1. Introduction and Preliminaries

Let w denote the space of all sequences. By `p, `∞, c and c0, we denote the
spaces of p-absolutely summable, bounded, convergent and null sequences respec-
tively. Let Z be a sequence space, then Kizmaz[12] introduced the following differ-
ence sequence spaces

Z(∆) = {(xk) ∈ w : (∆xk) ∈ Z},

for Z ∈ {`∞, c, c0}, where ∆xk = xk − xk+1 for each k ∈ N = {1, 2, 3...}−the set of
positive integers. Since then, many authors have studied further generalization of
the difference sequence spaces [5, 9, 15, 17]. Moreover, Altay and Polat [3], Polat
and Başar [14] and many others have studied new sequence spaces from matrix
point of view that represent difference operators.

For an infinite matrix A = (an,k) and x = (xk) ∈ w, the A-transform of x is
defined by Ax = {(Ax)n} and is supposed to be convergent for all n ∈ N, where
(Ax)n =

∑∞
k=0 an,kxk. For two sequence spaces X and Y and an infinite matrix

A = (an,k), the sequence space XA is defined by XA = {x = (xk) ∈ w : Ax ∈ X},
which is called the domain of matrix A in the space X. By (X : Y ), we denote the
class of all matrices such that X ⊆ YA.
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The Euler means Er of order r is defined by the matrix Er = (ern,k), where
0 < r < 1 and

ern,k =


(
n

k

)
(1− r)n−krk if 0 ≤ k ≤ n,

0 if k > n.

The Euler sequence spaces er0, erc and er∞ were defined by Altay and Başar [1] and
Altay, Başar and Mursaleen [2] as follows

er0 = {x = (xk) ∈ w : lim
n→∞

n∑
k=0

(
n
k

)
(1− r)n−krkxk = 0},

erc = {x = (xk) ∈ w : lim
n→∞

n∑
k=0

(
n
k

)
(1− r)n−krkxk exists},

and

er∞ = {x = (xk) ∈ w : sup
n∈N
|
n∑
k=0

(
n
k

)
(1− r)n−krkxk |<∞}.

Altay and Polat [3] defined further generalization of the Euler sequence spaces
er0(∇), erc(∇) and er∞(∇) by

Z(∇) = {x = (xk) ∈ w : (∇xk) ∈ Z}

for Z ∈ {er0, erc , er∞}, where ∇xk = xk − xk−1 for each k ∈ N. Here any term with
negative subscript is equal to naught. Moreover, many authors have used especially
the Euler matrix for defining new sequence spaces. For instance, Kara and Başarir
[10], Karakaya and Polat [11] and Polat and Başar [14].

Recently Bişgin [6, 7] defined another type of generalization of the Euler se-
quence spaces and introduced the binomial sequence spaces br,s0 , br,sc and br,s∞ . Let
r, s ∈ R and r + s 6= 0. Then the binomial matrix Br,s = (br,sn,k) is defined by

br,sn,k =


1

(s+r)n

(
n

k

)
sn−krk if 0 ≤ k ≤ n,

0 if k > n,

for all k, n ∈ N. For sr > 0 we have

(i) ‖ Br,s ‖<∞,

(ii) limn→∞ br,sn,k = 0 for each k ∈ N,

(iii) limn→∞
∑
k b

r,s
n,k = 1.

Thus, the binomial matrix Br,s is regular for sr > 0. Unless stated otherwise, we
assume that sr > 0. If we take s + r = 1, we obtain the Euler matrix Er. So, the
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binomial matrix generalizes the Euler matrix. Bişgin defined the following spaces
of binomial sequences

br,s0 = {x = (xk) ∈ w : lim
n→∞

1

(s+ r)n

n∑
k=0

(
n
k

)
sn−krkxk = 0},

br,sc = {x = (xk) ∈ w : lim
n→∞

1

(s+ r)n

n∑
k=0

(
n
k

)
sn−krkxk exists},

and

br,s∞ = {x = (xk) ∈ w : sup
n∈N
| 1

(s+ r)n

n∑
k=0

(
n
k

)
sn−krkxk |<∞}.

The main purpose of the present paper is to study the difference spaces br,s0 (∇),
br,sc (∇) and br,s∞ (∇) of the binomial sequence whose Br,s(∇)-transforms are in the
spaces c0, c and `∞, respectively. These new sequence spaces are the generalization
of the sequence spaces defined in [3, 6, 7]. Also, we compute the bases and the α-,
β- and γ-duals of these sequence spaces.

2. The Binomial Difference Sequence Spaces

In this section, we introduce the spaces br,s0 (∇), br,sc (∇) and br,s∞ (∇) and prove
that these sequence spaces are linearly isomorphic to the spaces c0, c and `∞,
respectively.

We first define the binomial difference sequence spaces br,s0 (∇), br,sc (∇) and
br,s∞ (∇) by

br,s0 (∇) = {x = (xk) ∈ w : (∇xk) ∈ br,s0 },
br,sc (∇) = {x = (xk) ∈ w : (∇xk) ∈ br,sc },

and

br,s∞ (∇) = {x = (xk) ∈ w : (∇xk) ∈ br,s∞ }.

Let us define the sequence y = (yn) as the Br,s(∇)-transform of a sequence
x = (xk), that is

yn = [Br,s(∇xk)]n =
1

(s+ r)n

n∑
k=0

(
n
k

)
sn−krk(∇xk).(2.1)

for each n ∈ N. Then, the binomial difference sequence spaces br,s0 (∇), br,sc (∇) and
br,s∞ (∇) can be redefined by all sequences whose Br,s(∇)-transforms are in the space
c0, c and `∞. Let X be the one of the spaces br,s0 (∇), br,sc (∇) and br,s∞ (∇). It is
obvious that these sequence spaces are linear spaces normed by

‖ x ‖X=‖ y ‖∞= sup
n∈N
| yn | .(2.2)
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Theorem 2.1. The sequence space X is a complete linear metric space with the
norm defined by the equation (2.2).

Proof. Let (xm)∞m=1 be a Cauchy sequence in X, where xm = (xmk
)∞k=1 ∈ X for

each m ∈ N. For every ε > 0, there is a positive integer m0 such that ‖ xm − xl ‖<
ε for m, l ≥ m0. Then we get

| Br,s[∇(xmk
− xlk)] |< ε

for m, l ≥ m0 and each k ∈ N. So (Br,s(∇xmk
))∞m=1 is a Cauchy sequence in the

set of complex numbers C. Since C is complete, we have liml→∞Br,s(∇xlk) =
Br,s(∇xk) for each k ∈ N. Hence

lim
l→∞

| Br,s[∇(xmk
− xlk)] |=| Br,s[∇(xmk

− xk)] |≤ ε for m > m0,

which implies that ‖ xm−x ‖< ε for all m > m0. Then we have xm → x as m→∞.
Next, we shall prove that x ∈ br,s∞ (∇). And we have

| Br,s(∇xk) | = | Br,s(xk − xk−1) |
= | Br,s(xk − xmk

+ xmk
− xmk−1

+ xmk−1
− xk−1) |

≤ | Br,s(xmk
− xmk−1

) | + | Br,s(xk − xmk
+ xmk−1

− xk−1) |
≤ ‖ xm ‖ + ‖ xm − x ‖
< ∞,

which implies that x ∈ br,s∞ (∇). Thus, br,s∞ (∇) is a complete linear metric space.
Obviously, br,s0 (∇), br,sc (∇) are closed subspaces of br,s∞ (∇), so br,s0 (∇), br,sc (∇) are
also complete linear metric spaces. 2

Theorem 2.2. The sequence spaces br,s0 (∇), br,sc (∇) and br,s∞ (∇) are linearly iso-
morphic to the spaces c0, c and `∞, respectively.

Proof. Similarly, we only prove the theorem for the space br,s0 (∇). To prove
br,s0 (∇) ∼= c0, we must show the existence of a linear bijection between the spaces
br,s0 (∇) and c0.

Consider T : br,s0 (∇) → c0 by T (x) = Br,s(∇xk). The linearity of T is obvious
and x = 0 whenever T (x) = 0. Therefore, T is injective.

Let y = (yn) ∈ c0 and define the sequence x = (xk) by

xk =

k∑
i=0

(s+ r)i
k∑
j=i

(
j
i

)
r−j(−s)j−iyi(2.3)

for each k ∈ N. Then we have

lim
n→∞

[Br,s(∇xk)]n = lim
n→∞

1

(s+ r)n

n∑
k=0

(
n
k

)
sn−krk(∇xk) = lim

n→∞
yn = 0,
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which implies that x ∈ br,s0 (∇) and T (x) = y. Consequently, T is surjective and is
norm preserving. Thus, br,s0 (∇) ∼= c0. 2

Theorem 2.3. The inclusions c0(∇) ⊆ er0(∇) ⊆ br,s0 (∇), c(∇) ⊆ erc(∇) ⊆ br,sc (∇)
and `∞(∇) ⊆ er∞(∇) ⊆ br,s∞ (∇) strictly hold.

Proof. Similarly, we only prove the inclusion c0(∇) ⊆ er0(∇) ⊆ br,s0 (∇). By the
Theorem 2.3 of Altay and Polat [3], we deduce that c0(∇) ⊆ er0(∇) strictly holds.
Now, we prove that er0(∇) ⊆ br,s0 (∇) holds. If r + s = 1, we have Er = Br,s. So
er0(∇) ⊆ br,s0 (∇) holds. Let 0 < r < 1 and s = 4. We define a sequence x = (xk) by
xk = (− 3

r )k for each k ∈ N. It is clearly that [Er(∇xk)]n = ( r+3
r (−2 − r)n) /∈ c0

and [Br,s(∇xk)]n = ( r+3
r ( 1

4+r )n) ∈ c0. So, we have x ∈ br,s0 (∇) \ er0(∇). This shows

that the inclusion er0(∇) ⊆ br,s0 (∇) strictly holds. 2

3. The Schauder Basis and α-, β- and γ-duals

For a normed space (X, ‖ · ‖), a sequence {xk : xk ∈ X}k∈N is called a Schauder
basis [8] if for every x ∈ X, there is a unique scalar sequence (λk) such that ‖x −∑n
k=0 λkxk‖ → 0, as n→∞. Next, we shall give a Schauder basis for the sequence

spaces br,s0 (∇) and br,sc (∇).

We define the sequence g(k)(r, s) = {g(k)
i (r, s)}i∈N by

g
(k)
i (r, s) =


0 if 0 ≤ i < k,

(s+ r)k
∑i
j=k

(
j

k

)
r−j(−s)j−k if i ≥ k,

for each k ∈ N.

Theorem 3.1. The sequence (g(k)(r, s))k∈N is a Schauder basis for the binomial
sequence space br,s0 (∇) and every x = (xi) ∈ br,s0 (∇) has a unique representation by

x =
∑
k

λk(r, s)g(k)(r, s),(3.1)

where λk(r, s) = [Br,s(∇xi)]k for each k ∈ N.

Proof. Obviously, Br,s(∇g(k)
i (r, s)) = ek ∈ c0, where ek is the sequence with 1 in the

kth place and zeros elsewhere for each k ∈ N. This implies that g(k)(r, s) ∈ br,s0 (∇)
for each k ∈ N.

For x ∈ br,s0 (∇) and m ∈ N, we put

x(m) =

m∑
k=0

λk(r, s)g(k)(r, s).

By the linearity of Br,s(∇), we have

Br,s(∇x(m)
i ) =

m∑
k=0

λk(r, s)Br,s(∇g(k)
i (r, s)) =

m∑
k=0

λk(r, s)ek



636 J. Meng and M. Song

and

[Br,s(∇(xi − x(m)
i ))]k =

{
0 if 0 ≤ k < m,

[Br,s(∇xi)]k if k ≥ m,

for each k ∈ N.
For any given ε > 0, there is a positive integer m0 such that

| [Br,s(∇xi)]k |< ε
2

for all k ≥ m0. Then we have

‖ x− x(m) ‖= sup
k≥m

| [Br,s(∇xi)]k |≤ sup
k≥m0

| [Br,s(∇xi)]k |<
ε

2
< ε,

which implies that x ∈ br,s0 (∇) is represented as (3.1).
To show the uniqueness of this representation, we assume that

x =
∑
k

µk(r, s)g(k)(r, s).

Then we have

[Br,s(∇xi)]k =
∑
k

µk(r, s)[Br,s(∇g(k)
i (r, s))]k =

∑
k

µk(r, s)(ek)k = µk(r, s),

which is a contradiction with the assumption that λk(r, s) = [Br,s(∇xi)]k for each
k ∈ N. This shows the uniqueness of this representation. 2

Theorem 3.2. Let g = (1, 2, 3, 4, ...) and limk→∞ λk(r, s) = l. The set
{g, g(0)(r, s), g(1)(r, s), ..., g(k)(r, s), ...} is a Schauder basis for the space br,sc (∇) and
every x ∈ br,sc (∇) has a unique representation by

x = lg +
∑
k

[λk(r, s)− l]g(k)(r, s).(3.2)

Proof. Obviously, Br,s(∇gki (r, s)) = ek ∈ c0 ⊆ c and g ∈ c(∇) ⊆ br,sc (∇). For
x ∈ br,sc (∇), we put y = x − lg and we have y ∈ br,s0 (∇). Hence, we deduce
that y has a unique representation by (3.1), which implies that x has a unique
representation by (3.2). Thus, we complete the proof. 2

Corollary 3.1. The sequence spaces br,s0 (∇) and br,sc (∇) are separable.

For the duality theory, the study of sequence spaces is more useful when we
investigate them equipped with linear topologies. Köthe and Toeplitz [13] first
computed the duals whose elements can be represented as sequences and defined
the α-dual (or Köthe-Toeplitz dual). Next, we compute the α-, β- and γ-duals of
the binomial sequence spaces br,s0 (∇), br,sc (∇) and br,s∞ (∇).
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For the sequence spaces X and Y , define multiplier space M(X,Y ) by

M(X,Y ) = {u = (uk) ∈ w : ux = (ukxk) ∈ Y for all x = (xk) ∈ X}.

Then the α-, β- and γ-duals of a sequence space X are defined by

Xα = M(X, `1), Xβ = M(X, c) and Xγ = M(X, `∞),

respectively. Let us give the following properties:

sup
K∈Γ

∑
n

|
∑
k∈K

an,k |<∞(3.3)

sup
n∈N

∑
k

| an,k |<∞(3.4)

lim
n→∞

an,k = ak for each k ∈ N(3.5)

lim
n→∞

∑
k

an,k = a(3.6)

lim
n→∞

∑
k

| an,k |=
∑
k

| lim
n→∞

an,k |(3.7)

where Γ is the collection of all finite subsets of N.

Lemma 3.1.([16]) Let A = (an,k) be an infinite matrix. Then the following state-
ments hold:

(i) A ∈ (c0 : `1) = (c : `1) = (`∞ : `1) if and only if (3.3) holds.

(ii) A ∈ (c0 : c) if and only if (3.4) and (3.5) hold.

(iii) A ∈ (c : c) if and only if (3.4), (3.5) and (3.6) hold.

(iv) A ∈ (`∞ : c) if and only if (3.5) and (3.7) hold.

(v) A ∈ (c0 : `∞) = (c : `∞) = (`∞ : `∞) if and only if (3.4) holds.

Theorem 3.3. The α-dual of the spaces br,s0 (∇), br,sc (∇) and br,s∞ (∇) is the set

Ur,s1 = {u = (uk) ∈ w : sup
I∈Γ

∑
k

|
∑
i∈I

(s+ r)i
k∑
j=i

(
j
i

)
r−j(−s)j−iuk |<∞}.

Proof. Let u = (uk) ∈ w and x = (xk) be defined by (2.3), then we have

ukxk =

k∑
i=0

(s+ r)i
k∑
j=i

(
j
i

)
r−j(−s)j−iukyi = (Gr,sy)k
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for each k ∈ N, where Gr,s = (gr,sk,i) is defined by

gr,sk,i =

(s+ r)i
∑k
j=i

(
j

i

)
r−j(−s)j−iuk if 0 ≤ i ≤ k,

0 if i > k.

Therefore, we deduce that ux = (ukxk) ∈ `1 whenever x ∈ br,s0 (∇), br,sc (∇) or
br,s∞ (∇) if and only if Gr,sy ∈ `1 whenever y ∈ c0, c or `∞, which implies that u =
(uk) ∈ [br,s0 (∇)]α, [br,sc (∇)]α or [br,s∞ (∇)]α if and only if Gr,s ∈ (c0 : `1) Gr,s ∈ (c : `1)
or Gr,s ∈ (`∞ : `1) by Part (i) of Lemma 3.1. So we obtain that

u = (uk) ∈ [br,s0 (∇)]α = [br,sc (∇)]α = [br,s∞ (∇)]α

if and only if

sup
I∈Γ

∑
k

|
∑
i∈I

(s+ r)i
k∑
j=i

(
j
i

)
r−j(−s)j−iuk |<∞.

Thus, we have [br,s0 (∇)]α = [br,sc (∇)]α = [br,s∞ (∇)]α = Ur,s1 . 2

Now, we define the sets Ur,s2 , Ur,s3 , Ur,s4 and Ur,s5 by

Ur,s2 = {u = (uk) ∈ w : sup
n∈N

∑
k

| un,k |<∞},

Ur,s3 = {u = (uk) ∈ w : lim
n→∞

un,k exists for each k ∈ N},

Ur,s4 = {u = (uk) ∈ w : lim
n→∞

∑
k

| un,k |=
∑
k

| lim
n→∞

un,k |},

and

Ur,s5 = {u = (uk) ∈ w : lim
n→∞

∑
k

un,k exists},

where

un,k = (s+ r)k
n∑
i=k

i∑
j=k

(
j
k

)
r−j(−s)j−kui.

Theorem 3.4. We have the following relations:

(i) [br,s0 (∇)]β = Ur,s2

⋂
Ur,s3 ,

(ii) [br,sc (∇)]β = Ur,s2

⋂
Ur,s3

⋂
Ur,s5 ,

(iii) [br,s∞ (∇)]β = Ur,s3

⋂
Ur,s4 .
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Proof. Let u = (uk) ∈ w and x = (xk) be defined by (2.3), then we consider the
following equation

n∑
k=0

ukxk =

n∑
k=0

uk[

k∑
i=0

(s+ r)i
k∑
j=i

(
j
i

)
r−j(−s)j−iyi]

=

n∑
k=0

[(s+ r)k
n∑
i=k

i∑
j=k

(
j
k

)
r−j(−s)j−kui]yk

= (Ur,sy)n

where Ur,s = (ur,sn,k) is defined by

un,k =

(s+ r)k
∑n
i=k

∑i
j=k

(
j

k

)
r−j(−s)j−kui if 0 ≤ k ≤ n,

0 if k > n.

Therefore, we deduce that ux = (ukxk) ∈ c whenever x ∈ br,s0 (∇) if and only if
Ur,sy ∈ c whenever y ∈ c0, which implies that u = (uk) ∈ [br,s0 (∇)]β if and only if
Ur,s ∈ (c0 : c) by Part (ii) of Lemma 3.1. So we obtain that [br,s0 (∇)]β = Ur,s2

⋂
Ur,s3 .

Using Parts (iii), (iv) instead of (ii) of Lemma 3.1, the proof can be proved in the
similar way. So, we omit the detail. 2

Similarly, we give the following theorem without proof.

Theorem 3.5. The γ-dual of the spaces br,s0 (∇), br,sc (∇) and br,s∞ (∇) is the set Ur,s2 .

4. Conclusion

By considering the definitions of the binomial matrix Br,s = (br,sn,k) and differ-

ence operator, we introduce the sequence spaces br,s0 (∇), br,sc (∇) and br,s∞ (∇). These
spaces are the natural continuation of [3, 6, 7]. Our results are the generalization
of the matrix domain of the Euler matrix of order r. In order to give full knowl-
edge to the reader on related topics with applications and a possible line of further
investigation, the e-book[4] is added to the list of references.
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