• Title/Summary/Keyword: $^1H-NMR$ Spectrum

Search Result 230, Processing Time 0.028 seconds

Immobilization of Lum,brokinase on the Surface of Polyurethane by using the Photoreactive Poly(acrylic acid) (광반응성 poly(acrylic acid)를 이용한 Lumbrokinase 의 polyurethane 표면 고정화 방법에 관한 연구)

  • 김현정;류은숙;김종원;민병구
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.6
    • /
    • pp.547-553
    • /
    • 1999
  • 생체재료로 사용되는 polyurethane(PU) 표면에 항혈전성 lumbrokinase(LK)를 고정함으로써 생체적합성을 향상시키고자하였다. 먼저 LK를 PU 표면에 고정하기 위한 가교제로서 4-azidoaniline hydrochloride와 poly(acrylic acid)를 이용하여 4-azidophenyl 작용기가 amido 결합으로 치환된 수용성, 광반응성 poly(acrylic acid)(PPa-II)를 합성하였다. H-nuclear magnetic reasonance spectrum(500MHz H-NMR)의 6-7 peak와 infrared spectrum (FT-IR) 의 2125.48 cm peak으로부터 PPA-II의 합성을 지원하였다. EH한 4-azidophenyl 작용기가 poly(acrylid acid) 잔기에 치환된 정도는 UV/VIS adpectrophotometric spectrum을 확인한 결과 11~14%임을 알 수있었다. 0.5 1및 5% PPA-II를 각각 광반응하여 얻은 PU는 39.5, 161.8 및 181.5 nmole/$\textrm{cm}^2$의 농도로 표면에 carvoxyl 작용기가 유도되었음을 알 수있었다. 0.05M KH2PO4 (pH 4.5) 용액에서 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide(EDC)를 촉매로 사용하여 LK를 PU표면에 amido 공유결합으로 고정하였으며, 이것은 지속적인 fibrinolytic 활성도를 보였다. PPA-II를 이용한 표면 개질 방법은 수용성 반응조건에서 이루어진다는 점과 광반응을 이용함으로써 특정부위에서의 표면개질이 가능하다는 점에서 그 응용가치가 크며 아울러 PU의 생체적합성을 향상시킬 수 있는 방법으로서 판단된다.

  • PDF

Solid-state NMR Studies of Phenethyl Sulfonic Acid-functionalized MCM-41

  • Chul Kim
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.2
    • /
    • pp.74-81
    • /
    • 2024
  • A sulfonic acid-water-silanol system in SO3H-functionalized MCM-41 was investigated using solid-state nuclear magnetic resonance techniques. The proton exchange rate between a water molecule and a silanol group in the S-PE-MCM-41 was determined by analyzing the 1D proton spectra, the proton EXSY spectrum, and 2H spin-lattice relaxation data under various hydration levels. Two kinds of water-bounding sites were found in the S-PE-MCM-41: weakly and strongly bound sites. Over several hours, water molecules bound to the weakly bound sites at the low hydration level migrated to the strongly bound sites. At high temperature, the S-PE-MCM-41 easily lost water molecules weakly bound to the silanol, while the strongly bound water molecules survived. Water molecules that participated in the hydration of the phenethyl sulfonate were involved in the hydrogenbonded silanol mechanism of proton conductivity. This phenomenon contributes higher proton conductivity to the S-PE-MCM-41 by the cooperation of sulfonyl and silanol groups in the proton transfer process, even at higher temperature.

Purification and Identification of Inhibitory Compounds from Cheongmoknosang Mulberry Leaves (Morus alba. L.) on Helicobacter pylori (청목노상 뽕잎으로부터 Helicobacter pylori 억제물질의 정제 및 동정)

  • Cho, Young-Je;Lee, Kyung-Hwan;Cha, Woen-Seup;Ju, In-Sik;Yun, Dong-Hyuck;An, Bong-Jeun;Lee, Seon-Ho;Kim, Myung-Uk;Kim, Jeung-Hoan;Chun, Sung-Sook
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.2
    • /
    • pp.65-69
    • /
    • 2009
  • In this study, we tried to find the subject to inhibit H. pylori from Cheongmoknosang mulberry leaves extracts and to purify and identify them. Total phenolic compounds of hot water and 80% ethanol extracts are 17.6 and 16.1 mg/g. The activity of H. pylori inhibition at 80% ethanol extracts was determined as 15mm clear zone. The purification of inhibitory compounds were carried on $C_{18}$ column and MCI-gel CHP-20 column chromatography which were used a gradient procedure as increasing ethanol in $H_2O$. The chemical structure of purified inhibitory compounds on H. pylori were identified chlorogenic acid, caffeic acid, and rosmarinic acid by FAB-MS, $^1H-NMR$, $^{13}C-NMR$ and IR spectrum.

Structural Studies of Copper(II)-Hippuryl-L-histidyl-L-leucine(HHL) Complex by NMR Methods

  • Lee Seong-Ran;Jun Ji-Hyun;Won Ho-Shik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.10 no.1
    • /
    • pp.115-125
    • /
    • 2006
  • Hippuryl-L-histidyl-L-leucine(HHL) is widely used as a substrate of angiotensin converting enzyme(ACE) cleaving the neurotransmitter angiotensin(I) to the octapeptide angiotensin(II). The structure of the substrate molecules should provide information regarding the geometric requirements of the ACE active site. For the purpose of determination of in vivo reaction, metallo(Cu, Zn)-HHL complexes were synthesized and the degree of complex formation were identified by MALDITOF, ESI mass spectrometric analysis. Tn addition, the pH-dependent species distribution curves were obtained by potentiometric titration. Nitrogen atoms of imidazole ring and oxygen atom of caboxylate groups in the peptide chain were observed to be participated in the metal complex formation. After purification of complexes further structural characterization were made by utilizing UV-Vis, electrochemical methods and NMR. Complete NMR signal assignments were carried out by using 2D-spectrum techniques COSY, TOCSY, NOESY, HETCOR. A complex that two imidazole and carboxylate groups are asymmetrically participating to coordination mode was predicted to the solution-state structure of $Cu(II)-HHL_2$ based on $^{13}C-NMR$ signal assignment and NOE information.

  • PDF

NMR Studies of Ni-binding Luteinizing Hormone Releasing Hormone

  • Kim, Jin;Won, Ho-Shik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.13 no.2
    • /
    • pp.143-153
    • /
    • 2009
  • Luteinizing Hormone Releasing Hormone (LHRH) is composed of 10 amino acids, and is best known as a neurotransmitter. Because of the 80% homology in animals, much more concerns have focused on the substances that have similar functions or can control LHRH. Ni, Cu-LHRH complexes were synthesized. The degree of complexation was monitored by $^1H,\;^{13}C$-NMR chemical shifts, and final products were identified by ESI-Mass spectrum. Solution-state structure determination of Ni-LHRH complex was accomplished by using NMR results and NMR-based distance geometry (DG). Interproton distances from nuclear Overhauser effect spectroscopy (NOESY) were utilized for the molecular structure determination. Results were compared with previous structures obtained from energy minimization and other spectroscopic methods. Structure obtained in this study has a cyclic conformation which is similar to that of energy minimized, and exhibits a specific a-helical turn with residue numbers (2~7) out of 10 amino acids. Comparison of chemical shifts and EPR studies of Ni, Cu-LHRH complexes exhibit that Ni-LHRH complex has same binding sites with the 4-coordination mode as in Zn-LHRH complex.

Antioxidative Compounds in Extracts of Eleutherococcus senticosus Max. Plantlets (가시오갈피 유식물체 추출물의 항산화 활성물질)

  • Kim, Myong-Jo;Kwon, Yong-Soo;Yu, Chang-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.4
    • /
    • pp.194-198
    • /
    • 2005
  • Two antioxidative compounds were isolated from the methanolic extract of Eleutherococcus senticosus Max. plantlets and identified as chlorogenic acid and 1,4-di-o-caffeoyl-quinic acid on the basis of mass spectroscopy, $^1H-NMR$ and $^{13}C-NMR$ data. The DPPH free radical scavenging activities of chlorogenic acid $(RC_{50}\;:\;1.2\;{\mu}g)$ and 1,4-di-o-caffeoyl-quinic acid $(RC_{50}\;:\;0.4\;{\mu}g)$ were more effective than those of ${\alpha}-tocopherol\;(RC_{50}\;:\;12\;{\mu}g)$. Of them, 1,4-di-o-caffeoyl-quinic acid compound were isolated for the first time from this plant.

A Study on the Ionic Dissociation Rate of $\alpha$-Chlorobenzyl Ethyl Ether by Dynamic NMR Spectroscopy-Chlorobenzyl Ethyl Ether by Dynamic NMR Spectroscopy (動的 NMR에 依한 $\alpha$-Chlorobenzyl Ethyl Ether의 이온解離速度에 關한 硏究)

  • Chang-Yol Kim
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.44-52
    • /
    • 1980
  • Ionic dissociation rates of $\alpha$-chlorobenzyl ethyl ether in each solvent of toluene-$d_8$ and carbon tetrachloride were measured by the method of dynamic NMR spectroscopy. The spin system of these 1H NMR spectra was $AB_3$. The theoretical spectrum was calculated by computer simulation of dynamic NMR spectra, which agreed very well with observed spectra. From this computer simulation, the ionic dissociation rate constant k was obtained, and by Eyring plot with it, slope and intercept length was gained, from which kinetic parameters were calculated.The easiness of ionic dissociation depended upon solvent polarity. Activation enthalpy was 4.7 kcal/mole in toluene-$d_8$, 10.7 kcal/mole in carbon tetrachloride, and activation entropy was -35. 8 e.u. in toluene-$d_8$, -14.4 e.u. in carbon tetrachloride. It was understood that though the ${\Delta}H^{neq}$ value was small, this ionic dissociation had an easier procession in nonpolar solvents with increasing temperatures. Considering that the ionic dissociation could be thought as the first step of $S_N1$ mechanism, attention might be paid to the results that the value of ${\Delta}S^{neq}$ had a large negative value in comparison with a small ${\Delta}H^{neq}$.

  • PDF

Isolation of Antimicrobial Substance by Produced Bacillus sp. SD-10 with Antagonistic Activity Towards Mushroom Pathogens (버섯병원균에 대한 길항세균 Bacillus sp. SD-10이 생산하는 항균물질의 분리)

  • 이상원;류현순;갈상완;박기훈;김철호;최영주
    • Journal of Life Science
    • /
    • v.14 no.3
    • /
    • pp.467-471
    • /
    • 2004
  • Bacillus sp. SD-10 was investigated to develope biological pesticides for control of mushroom diseases. Bacillus sp. SD-10 showed high antifungal activity when cultured at 35∼4$0^{\circ}C$ for 30∼4$0^{\circ}C$. The culture filtrate of the bacterium inhibited the growth of mycelium of T. virens which is a kind of mushroom pathogene. On the test of inhibition of spore germination of T. virens, more than 5% of the culture filtrate in the media inhibited completely the germination of the spores. An antimicrobial substance, UPX-1 was purified from the culture filtrate of the Bacillus. From the $^1H$-NMR and $^{13}C$-NMR spectrum analysis, the substance was indentifed as disaccharide composed to six carbon sugars. UPX-1 has not only strong antifungal activity against T. virens but also antibacterial activity against Pseudomonas tolaassi.

Preparation and Characterization of Dinuclear and Trinuclear Metal Complexes, $[(PPh_3)_2(CO)M({\mu}-E)M(CO)(PPh_3)_2]X_2$ (M=Rh, Ir; E=Pyrazine, 4,4'-Bipyridyl, $X=SO_3CF_3$; $E=Pd(CN)_4$, $Pt(CN)_4$, X=none)

  • Ko Jaejung;Lee Myunggab;Kim Moonsik;Kang Sang Ook
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.158-162
    • /
    • 1992
  • Hydrocarbon solution of $(PPh_3)_2(CO)MOSO_2CF_3(M=Rh$, Ir)reacts rapidly with Pyrazine or 4,4'-bipyridyl to yield dinuclear metal complexes $[(PPh_3)_3(CO)M({\mu}-pyrazine)M(CO)(PPh_3)_2](SO_3CF_3)_2$ (I: M= RhH; III: M=Ir) or [$(PPh_3)_2$(CO)M(${\mu}$-44'-bipyridyl)M(CO)$(PPh_3)_2](SO_3CF_3)_2$, (II: M=Rh; IV: M=Ir), respectively. Compounds, I, II, III, and IV were characterized by $^1H-NMR$, $^{13}C-NMR$, $^{31}P-NMR$, and infrared spectrum. Ethanol solution of $(PPh_3)_2(CO)MOSO_2CF_3$ (M=Rh, Ir) also reacts with $(TBA)_2$M'$(CN)_4$ (M'=Pd, Pt) to yield trinuclear metal complexes [$(PPh_3)_2$(CO)dM-NCM'$(CN)_2$CN-M(CO)$(PPh_3)_2]$ (V : M=Rh, M'=Pd; VI : M=Rh, M'=Pt; VII: M=Ir, M'=Pd; VIII: M=Ir, M'=Pt). The trinuclear metal complexes V, VI, VII, and VIII are bridged by the cyanide groups. The infrared spectrum of V, VI, VII, and VIII supports the presence of the bridged cyanide and terminal cyanide group.

Isolation, Physico-chemical Properties and Biological Activity of Aurodox Group Antibiotics

  • Kim, Si-Kwan;Yeo, Woon-Hyung;Kim, Sang-Seock
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.265-269
    • /
    • 1996
  • An isolate of Streptomyces rochei synonym was found to produce antibiotics with narrow anti-microbial spectrum against Streptococcus and Xanthomonas sp. Among the antibiotic complex produced by the strain, the main active compound was isolated, and its physico-chemical properties and biological activities were investigated. Molecular weight of the compound was determined to be ${[M+H]}^+$ 797 (FAB-MS). UV, $^1H \;and\;^{13}C$ NMR, and IR spectra suggested that the compound is a kirromycin-like aurodox group antibiotic. However, the anti-microbial spectrum of the main compound was slightly different from that of kirromycin. In addition, it was newly found that kirromycin showed a selective anti-microbial activity against Streptococcus pyogenes and phytopathogenic Xanthomonas sp.

  • PDF