• 제목/요약/키워드: $\mathbb{L}^p$-solution

검색결과 6건 처리시간 0.016초

Lp ESTIMATES FOR SCHRÖDINGER TYPE OPERATORS ON THE HEISENBERG GROUP

  • Yu, Liu
    • 대한수학회지
    • /
    • 제47권2호
    • /
    • pp.425-443
    • /
    • 2010
  • We investigate the Schr$\ddot{o}$dinger type operator $H_2\;=\;(-\Delta_{\mathbb{H}^n})^2+V^2$ on the Heisenberg group $\mathbb{H}^n$, where $\Delta_{\mathbb{H}^n}$ is the sublaplacian and the nonnegative potential V belongs to the reverse H$\ddot{o}$lder class $B_q$ for $q\geq\frac{Q}{2}$, where Q is the homogeneous dimension of $\mathbb{H}^n$. We shall establish the estimates of the fundamental solution for the operator $H_2$ and obtain the $L^p$ estimates for the operator $\nabla^4_{\mathbb{H}^n}H^{-1}_2$, where $\nabla_{\mathbb{H}^n}$ is the gradient operator on $\mathbb{H}^n$.

ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS TO SEMILINEAR ELLIPTIC EQUATIONS IN ℝn

  • Lai, Baishun;Luo, Qing;Zhou, Shuqing
    • 대한수학회지
    • /
    • 제48권2호
    • /
    • pp.431-447
    • /
    • 2011
  • We investigate the asymptotic behavior of positive solutions to the elliptic equation (0.1) ${\Delta}u+|x|^{l_1}u^p+|x|^{l_2}u^q=0$ in $\mathbb{R}^n$. We obtain a conclusion that, for n $\geq$ 3, -2 < $l_2$ < $l_1$ $\leq$ 0 and q > p > 1, any positive radial solution to (0.1) has the following properties: $lim_{r{\rightarrow}{\infty}}r^{\frac{2+l_1}{p-1}}\;u$ and $lim_{r{\rightarrow}0}r^{\frac{2+l_2}{q-1}}\;u$ always exist if $\frac{n+1_1}{n-2}$ < p < q, $p\;{\neq}\;\frac{n+2+2l_1}{n-2}$, $q\;{\neq}\;\frac{n+2+2l_2}{n-2}$. In addition, we prove that the singular positive solution of (0.1) is unique under some conditions.

𝔻-SOLUTIONS OF BSDES WITH POISSON JUMPS

  • Hassairi, Imen
    • 대한수학회지
    • /
    • 제59권6호
    • /
    • pp.1083-1101
    • /
    • 2022
  • In this paper, we study backward stochastic differential equations (BSDEs shortly) with jumps that have Lipschitz generator in a general filtration supporting a Brownian motion and an independent Poisson random measure. Under just integrability on the data we show that such equations admit a unique solution which belongs to class 𝔻.

SYMMETRIC SOLUTIONS FOR A FOURTH-ORDER MULTI-POINT BOUNDARY VALUE PROBLEMS WITH ONE-DIMENSIONAL $p$-LAPLACIAN AT RESONANCE

  • Yang, Aijun;Wang, Helin
    • Journal of applied mathematics & informatics
    • /
    • 제30권1_2호
    • /
    • pp.161-171
    • /
    • 2012
  • We consider the fourth-order differential equation with one-dimensional $p$-Laplacian (${\phi}_p(x^{\prime\prime}(t)))^{\prime\prime}=f(t,x(t),x^{\prime}(t),x^{\prime\prime}(t)$) a.e. $t{\in}[0,1]$, subject to the boundary conditions $x^{\prime\prime}}(0)=0$, $({\phi}_p(x^{\prime\prime}(t)))^{\prime}{\mid}_{t=0}=0$, $x(0)={\sum}_{i=1}^n{\mu}_ix({\xi}_i)$, $x(t)=x(1-t)$, $t{\in}[0,1]$, where ${\phi}_p(s)={\mid}s{\mid}^{p-2}s$, $p$ > 1, 0 < ${\xi}_1$ < ${\xi}_2$ < ${\cdots}$ < ${\xi}_n$ < $\frac{1}{2}$, ${\mu}_i{\in}\mathbb{R}$, $i=1$, 2, ${\cdots}$, $n$, ${\sum}_{i=1}^n{\mu}_i=1$ and $f:[0,1]{\times}\mathbb{R}^3{\rightarrow}\mathbb{R}$ is a $L^1$-Carath$\acute{e}$odory function with $f(t,u,v,w)=f(1-t,u,-v,w)$ for $(t,u,v,w){\in}[0,1]{\times}\mathbb{R}^3$. We obtain the existence of at least one nonconstant symmetric solution by applying an extension of Mawhin's continuation theorem due to Ge. Furthermore, an example is given to illustrate the results.

SMALL DATA SCATTERING OF HARTREE TYPE FRACTIONAL SCHRÖDINGER EQUATIONS IN DIMENSION 2 AND 3

  • Cho, Yonggeun;Ozawa, Tohru
    • 대한수학회지
    • /
    • 제55권2호
    • /
    • pp.373-390
    • /
    • 2018
  • In this paper we study the small-data scattering of the d dimensional fractional $Schr{\ddot{o}}dinger$ equations with d = 2, 3, $L{\acute{e}}vy$ index 1 < ${\alpha}$ < 2 and Hartree type nonlinearity $F(u)={\mu}({\mid}x{\mid}^{-{\gamma}}{\ast}{\mid}u{\mid}^2)u$ with max(${\alpha}$, ${\frac{2d}{2d-1}}$) < ${\gamma}{\leq}2$, ${\gamma}$ < d. This equation is scaling-critical in ${\dot{H}}^{s_c}$, $s_c={\frac{{\gamma}-{\alpha}}{2}}$. We show that the solution scatters in $H^{s,1}$ for any s > $s_c$, where $H^{s,1}$ is a space of Sobolev type taking in angular regularity with norm defined by ${\parallel}{\varphi}{\parallel}_{H^{s,1}}={\parallel}{\varphi}{\parallel}_{H^s}+{\parallel}{\nabla}_{{\mathbb{S}}{\varphi}}{\parallel}_{H^s}$. For this purpose we use the recently developed Strichartz estimate which is $L^2$-averaged on the unit sphere ${\mathbb{S}}^{d-1}$ and utilize $U^p-V^p$ space argument.

EXISTENCE, MULTIPLICITY AND REGULARITY OF SOLUTIONS FOR THE FRACTIONAL p-LAPLACIAN EQUATION

  • Kim, Yun-Ho
    • 대한수학회지
    • /
    • 제57권6호
    • /
    • pp.1451-1470
    • /
    • 2020
  • We are concerned with the following elliptic equations: $$\{(-{\Delta})^s_pu={\lambda}f(x,u)\;{\text{in {\Omega}}},\\u=0\;{\text{on {\mathbb{R}}^N{\backslash}{\Omega}},$$ where λ are real parameters, (-∆)sp is the fractional p-Laplacian operator, 0 < s < 1 < p < + ∞, sp < N, and f : Ω × ℝ → ℝ satisfies a Carathéodory condition. By applying abstract critical point results, we establish an estimate of the positive interval of the parameters λ for which our problem admits at least one or two nontrivial weak solutions when the nonlinearity f has the subcritical growth condition. In addition, under adequate conditions, we establish an apriori estimate in L(Ω) of any possible weak solution by applying the bootstrap argument.