Browse > Article
http://dx.doi.org/10.4134/JKMS.j190693

EXISTENCE, MULTIPLICITY AND REGULARITY OF SOLUTIONS FOR THE FRACTIONAL p-LAPLACIAN EQUATION  

Kim, Yun-Ho (Department of Mathematics Education Sangmyung University)
Publication Information
Journal of the Korean Mathematical Society / v.57, no.6, 2020 , pp. 1451-1470 More about this Journal
Abstract
We are concerned with the following elliptic equations: $$\{(-{\Delta})^s_pu={\lambda}f(x,u)\;{\text{in {\Omega}}},\\u=0\;{\text{on {\mathbb{R}}^N{\backslash}{\Omega}},$$ where λ are real parameters, (-∆)sp is the fractional p-Laplacian operator, 0 < s < 1 < p < + ∞, sp < N, and f : Ω × ℝ → ℝ satisfies a Carathéodory condition. By applying abstract critical point results, we establish an estimate of the positive interval of the parameters λ for which our problem admits at least one or two nontrivial weak solutions when the nonlinearity f has the subcritical growth condition. In addition, under adequate conditions, we establish an apriori estimate in L(Ω) of any possible weak solution by applying the bootstrap argument.
Keywords
Fractional p-Laplacian; weak solution; critical points; variational method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. A. Adams and J. J. F. Fournier, Sobolev Spaces, second edition, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003.
2 A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349-381. https://doi.org/10.1016/0022-1236(73)90051-7   DOI
3 J.-H. Bae and Y.-H. Kim, Critical points theorems via the generalized Ekeland variational principle and its application to equations of p(x)-Laplace type in $R^N$, Taiwanese J. Math. 23 (2019), no. 1, 193-229. https://doi.org/10.11650/tjm/181004   DOI
4 G. Barletta, A. Chinni, and D. O'Regan, Existence results for a Neumann problem involving the p(x)-Laplacian with discontinuous nonlinearities, Nonlinear Anal. Real World Appl. 27 (2016), 312-325. https://doi.org/10.1016/j.nonrwa.2015.08.002   DOI
5 B. Barrios, E. Colorado, A. De Pablo, and U. Sanchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations 252 (2012), no. 11, 6133-6162. https://doi.org/10.1016/j.jde.2012.02.023   DOI
6 J. Bertoin, Levy Processes, Cambridge Tracts in Mathematics, 121, Cambridge University Press, Cambridge, 1996.
7 Z. Binlin, G. Molica Bisci, and R. Servadei, Superlinear nonlocal fractional problems with infinitely many solutions, Nonlinearity 28 (2015), no. 7, 2247-2264. https://doi.org/10.1088/0951-7715/28/7/2247   DOI
8 C. Bjorland, L. Caffarelli, and A. Figalli, Non-local gradient dependent operators, Adv. Math. 230 (2012), no. 4-6, 1859-1894. https://doi.org/10.1016/j.aim.2012.03.032   DOI
9 G. Bonanno, Relations between the mountain pass theorem and local minima, Adv. Nonlinear Anal. 1 (2012), no. 3, 205-220. https://doi.org/10.1515/anona-2012-0003
10 G. Bonanno, A critical point theorem via the Ekeland variational principle, Nonlinear Anal. 75 (2012), no. 5, 2992-3007. https://doi.org/10.1016/j.na.2011.12.003   DOI
11 G. Bonanno and A. Chinni, Discontinuous elliptic problems involving the p(x)- Laplacian, Math. Nachr. 284 (2011), no. 5-6, 639-652. https://doi.org/10.1002/mana.200810232   DOI
12 G. Bonanno and A. Chinni, Existence and multiplicity of weak solutions for elliptic Dirichlet problems with variable exponent, J. Math. Anal. Appl. 418 (2014), no. 2, 812-827. https://doi.org/10.1016/j.jmaa.2014.04.016   DOI
13 G. Bonanno, G. D'Agui, and P. Winkert, Sturm-Liouville equations involving discontinuous nonlinearities, Minimax Theory Appl. 1 (2016), no. 1, 125-143.
14 A. Iannizzotto, S. Liu, K. Perera, and M. Squassina, Existence results for fractional p-Laplacian problems via Morse theory, Adv. Calc. Var. 9 (2016), no. 2, 101-125. https: //doi.org/10.1515/acv-2014-0024   DOI
15 L. Brasco, E. Parini, and M. Squassina, Stability of variational eigenvalues for the fractional p-Laplacian, Discrete Contin. Dyn. Syst. 36 (2016), no. 4, 1813-1845. https://doi.org/10.3934/dcds.2016.36.1813   DOI
16 L. Caffarelli, Non-local diffusions, drifts and games, in Nonlinear partial differential equations, 37-52, Abel Symp., 7, Springer, Heidelberg, 2012. https://doi.org/10.1007/978-3-642-25361-4_3
17 F. Demengel and G. Demengel, Functional Spaces for the Theory of Elliptic Partial Differential Equations, translated from the 2007 French original by Reinie Erne, Universitext, Springer, London, 2012. https://doi.org/10.1007/978-1-4471-2807-6
18 E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521-573. https://doi.org/10.1016/j.bulsci.2011.12.004   DOI
19 G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul. 7 (2008), no. 3, 1005-1028. https://doi.org/10.1137/070698592   DOI
20 J.-M. Kim, Y.-H. Kim, and J. Lee, Multiplicity of small or large energy solutions for Kirchhoff-Schrodinger-Type equations involving the fractional p-Laplacian in $R^N$, Symmetry 10 (2018), 1-21. https://doi.org/10.3390/sym10100436   DOI
21 N. Laskin, Fractional quantum mechanics and Levy path integrals, Phys. Lett. A 268 (2000), no. 4-6, 298-305. https://doi.org/10.1016/S0375-9601(00)00201-2   DOI
22 N. Laskin, Fractional Schrodinger equation, Phys. Rev. E (3) 66 (2002), no. 5, 056108, 7 pp. https://doi.org/10.1103/PhysRevE.66.056108   DOI
23 R. Lehrer, L. A. Maia, and M. Squassina, On fractional p-Laplacian problems with weight, Differential Integral Equations 28 (2015), no. 1-2, 15-28. http://projecteuclid.org/euclid.die/1418310419
24 O. H. Miyagaki and M. A. S. Souto, Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differential Equations 245 (2008), no. 12, 3628-3638. https://doi.org/10.1016/j.jde.2008.02.035   DOI
25 S. Liu, On superlinear problems without the Ambrosetti and Rabinowitz condition, Non-linear Anal. 73 (2010), no. 3, 788-795. https://doi.org/10.1016/j.na.2010.04.016   DOI
26 S. Liu and S. Li, Infinitely many solutions for a superlinear elliptic equation, Acta Math. Sinica (Chin. Ser.) 46 (2003), no. 4, 625-630.   DOI
27 V. Maz'ya and T. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal. 195 (2002), no. 2, 230-238. https://doi.org/10.1006/jfan.2002.3955   DOI
28 R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000), no. 1, 77 pp. https://doi.org/10.1016/S0370-1573(00)00070-3
29 R. Metzler and J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A 37 (2004), no. 31, R161-R208. https://doi.org/10.1088/0305-4470/37/31/R01   DOI
30 R. Pei, C. Ma, and J. Zhang, Existence results for asymmetric fractional p-Laplacian problem, Math. Nachr. 290 (2017), no. 16, 2673-2683. https://doi.org/10.1002/mana.201600279   DOI
31 K. Perera, M. Squassina, and Y. Yang, Bifurcation and multiplicity results for critical fractional p-Laplacian problems, Math. Nachr. 289 (2016), no. 2-3, 332-342. https://doi.org/10.1002/mana.201400259   DOI
32 R. Servadei, Infinitely many solutions for fractional Laplace equations with subcritical nonlinearity, in Recent trends in nonlinear partial differential equations. II. Stationary problems, 317-340, Contemp. Math., 595, Amer. Math. Soc., Providence, RI, 2013. https://doi.org/10.1090/conm/595/11809   DOI
33 B. Zhang and M. Ferrara, Multiplicity of solutions for a class of superlinear non-local fractional equations, Complex Var. Elliptic Equ. 60 (2015), no. 5, 583-595. https://doi.org/10.1080/17476933.2014.959005   DOI
34 R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl. 389 (2012), no. 2, 887-898. https://doi.org/10.1016/j.jmaa.2011.12.032   DOI
35 Y. Wei and X. Su, Multiplicity of solutions for non-local elliptic equations driven by the fractional Laplacian, Calc. Var. Partial Differential Equations 52 (2015), no. 1-2, 95-124. https://doi.org/10.1007/s00526-013-0706-5   DOI
36 M. Xiang, B. Zhang, and M. Ferrara, Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian, J. Math. Anal. Appl. 424 (2015), no. 2, 1021-1041. https://doi.org/10.1016/j.jmaa.2014.11.055   DOI