• Title/Summary/Keyword: $\beta$-alumina structure

Search Result 12, Processing Time 0.022 seconds

Mg Atom Substitution for Nonstoichiometric Na+ β-Alumina: A First Principles Study (비화학양론적 Na+β-alumina를 위한 Mg 원자의 치환: 제일원리 계산)

  • Kim, Dae-Hyun;Kim, Dae-Hee;Jeong, Yong-Chan;Seo, Hwa-Il;Kim, Yeong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.20 no.2
    • /
    • pp.55-59
    • /
    • 2010
  • $Na^+$ ion conductivity can be improved by the substitution of an Mg atom for an Al atom to form a nonstoichiometric $Na^+$ $\beta$-alumina. We performed a first principles study to investigate the most stable substitution site of an Mg atom and the resulting structural change of the nonstoichiometric $Na^+$ $\beta$-alumina. Al atoms were classified as four different layers in the spinel block that are separated by conduction planes in the nonstoichiometric $Na^+$ $\beta$-alumina. The substitution of an Mg atom for an Al atom at a tetragonal site was more favorable than that at an octahedral site. The substitution in the spinel block was more favorable than that close to the conduction plane. This result was well explained by the volume changes of the polyhedrons, by the standard deviation of the Mg-O distance, and by the comparison with bulk MgO structure. Our result indicates that the most preferable site for the Mg atom was the tetrahedral site at the spinel block in the nonstoichiometric $Na^+$ $\beta$-alumina.

Mixing Rules of Young's Modulus, Thermal Expansion Coefficient and Thermal Conductivity of Solid Material with Particulate Inclusion

  • Hirata, Yoshihiro;Shimonosono, Taro
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.43-49
    • /
    • 2016
  • This analyzed a Young's modulus (E), a thermal expansion coefficient (TEC, ${\beta}$) and a thermal conductivity (${\kappa}$) of the material with simple cubic particulate inclusion using two model structures: a parallel structure and a series structure of laminated layers. The derived ${\beta}$ equations were applied to calculate the ${\beta}$ value of the W-MgO system. The accuracy was higher for the series model structure than for the parallel model structure. Young's moduli ($E_c$) of sintered porous alumina compacts were theoretically related to the development of neck growth of grain boundary between sintered two particles and expressed as a function of porosity. The series structure model with cubic pores explained well the increased tendency of $E_c$ with neck growth rather than the parallel structure model. The thermal conductivity of the three phase system of alumina-mullite-pore was calculated by a theoretical equation developed in this research group, and compared with the experimental results. The pores in the sintered composite were treated as one phase. The measured thermal conductivity of the composite with 0.5-25% porosity (open and closed pores) was in accordance with the theoretical prediction based on the parallel structure model.

The Luminescence Property of Ba-Mg-Al-O:$Eu^2+$ Blue Phosphors (Ba-Mg-Al-O:$Eu^2+$ 청색형광체의 발광특성)

  • 김광복;천희곤;조동율;구경완
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.157-161
    • /
    • 2000
  • Blue phosphor of Ba-Mg-Al-O:Eu$^{2+}$ phase was fabricated by conventional firing techniques under reducing atmosphere and its photoluminescence properties are studied with varying Eu concentration and phost-annealing temperature under air atmosphere. This phosphors were well crystallized with particle size in the range of 3~5um and emitted a blue light at a dominent wavelength 450nm for 254nm UV irradiation. The concentration quenching wit Eu$^{2+}$ was that with increasing Eu concentration the energy transfer between the activator ions steadily improves, so that the excitation energy is transported over larger distances through the lattice before luminescence can occur. Thermal quenching also occurred in this phosphor means that in a host lattice with the $\beta$-alumina structure the bond of an Eu$^{2+}$ ion with the nearest-neighbour oxygen ion is much stronger than in a lattice with the magnetoplumbite structure.cture.

  • PDF

The Effect of CTAB on the Citrate Sol-gel Process for the Synthesis of Sodium Beta-Alumina Nano-Powders

  • Wang, Zaihua;Li, Xinjun;Feng, Ziping
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1310-1314
    • /
    • 2011
  • Sodium beta-alumina (SBA) nano-powders were synthesized by the citrate sol-gel process, and the effects of the cationic surfactant n-cetyltrimethylammonium bromide surfactant (CTAB) were investigated. The structure and morphology of the nano-powders were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM) techniques, respectively. The effects of CTAB on the citrate sol-gel process and the SBA formation were investigated by thermo gravimetric/differential thermal analysis (TG/DTA) and Fourier transform infrared spectroscopy (FTIR). The conductivity of ceramic pellets of SBA was measured by electrochemical impedance spectroscopy (EIS). The results showed that the CTAB inhibited the agglomeration of SBA powders effectively and consequently decreased the crystallization temperature of SBA, about $150^{\circ}C$ lower than that of the sample without CTAB. The measured conductivity of SBA was $1.21{\times}10^{-2}S{\cdot}cm^{-1}$ at $300^{\circ}C$.

Bi-electrolyte Carbon Dioxide Gas Sensor Based on Paste Sodium-Beta Alumina and Yttria-stabilized Zirconia

  • Han, Hyeuk Jin;Park, Chong Ook
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.170-172
    • /
    • 2014
  • $CO_2$ sensor was used only one solid electrolyte in many cases. To improve the sensing characteristics of $CO_2$ sensors, solid electrolyte $CO_2$ sensor has been developed by bi-electrolyte type sensor using Na-Beta-alumina and YSZ. However, in many further studies, bi-electrolyte type sensor was made by pellet pressed by press machine and additional treatment for formation of interface. In the aspect of mass production, using thick film and additional treatment is not suitable. In this study, $CO_2$ sensor was fabricated by bi-electrolyte structure which was made by an NBA paste layer deposited on YSZ pellet and fired at $1650^{\circ}C$ for 2 hour. The formation of stable interface between YSZ and NBA were confirmed by SEM image. When the type IV electrochemical cell arrangement represented by $CO_2,O_2,Pt{\mid}Li_2CO_3-CaCO_3{\parallel}NBA{\parallel}YSZ{\mid}O_2,Pt$ is used to measure the $CO_2$ concentration in air. This sensor EMF should depend only on the concentration of $CO_2$ by logarithmic. Also, sensor shows $P_{CO_2}$ and EMF relationship like nerstian reaction at a temperature of $450^{\circ}C$.

Methane Conversion over Supported Lead Oxide Catalysts (담지된 납산화물 촉매상에서 메탄의 전환반응)

  • Jang Jong-San;Park Sang-Eon
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.1
    • /
    • pp.147-156
    • /
    • 1992
  • Supported lead oxide catalysts were prepared by using ${\alpha}-,{\beta}-{\gamma}$-alumina, and MgO as a support. Among the supported lead oxide catalysts, MgO-supported catalyst showed the highest $C_2^+$ hydrocarbon selectivity for the methane conversion into $C_2^+$ hydrocarbons, but ${\gamma}$-alumina-supported PbO catalyst gave the highest $CO_2$ selectivity. And ${\alpha}$-alumina-supported catlyst showed the midium activity, whereas ${\beta}$-alumina-supported catalyst gave little activity. These reaction characteristics seemed to be largely dependent on the acticity of lattice oxygens in supported catalysts, which would be influnto be largely dependent on the activity of lattice oxygens in supported catalysts, which would be influenced in the interaction between the supports and lead oxides and the properties of supports. Especially, much higher ration of (002)/(111) peak intensities for PbO phase on MgO support than on the other supports in X-ray diffraction analysis was considered to be ab evidence that methane oxidative coupling of methane might be so-called structure-sensitive reaction, and this seemed to be an example of surface oxide-support interaction (SOSI) in the oxidative coupling reaction.

  • PDF

A Study of the Structure and Luminescence Properly of BaMgAl10O17:Eu2+ Blue Phosphor using Scattering Method (Scattering법을 이용한 BaMgAl10O17:Eu2+ 청색형광체의 구조와 발광특성 연구)

  • 김광복;김용일;구경완;천희곤;조동율
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.1
    • /
    • pp.67-74
    • /
    • 2002
  • A phosphor for Plasma Display Panel, BaMgAl$_{10}$ O$_{17}$ :Eu$^{2+}$, showing a blue emission band at about 450nm was prepared by a solid-state reaction using BaCO$_3$, $Al_2$O$_3$, MgO, Eu$_2$O$_3$ as starting materials wish flux AlF$_3$. The study of the behaviour of Eu in BAM phosphor was carried out by the photoluminescence spectra and the Rietveld method with X-ray and neutron powder diffraction data to refine the structural parameters such as lattice constants, the valence state of Eu, the preferential site of Mg atom and the site fraction of each atom. The phenomenon of the concentration quenching was abound 2.25~2.3wt% of Eu due to a decrease in the critical distance for energy transfer of inter-atomic Eu. Through the combined Rietveld refinement, R-factor, R$_{wp}$, was 8.11%, and the occupancy of Eu and Mg was 0.0882 and 0.526 at critical concentration. The critical distance of Eu$^{2+}$ in BAM was 18.8$\AA$ at 2.25% Eu of the concentration quenching. Furthermore, c/a ratio was decreased to 3.0wt% and no more change was observed over that concentration. The maximum entropy electron density was found that the modeling of $\beta$-alumina structure in BaMgAl$_{10}$ O$_{17}$ :Eu$^{2+}$correct coincided showing Ba, Eu, O atoms of z= 1/4 mirror plane.e.ane.e.

R&D Status of Na/NiCl2 Battery (Na/NiCl2 전지의 연구 개발 동향)

  • Kim, Hyun-Soo;Lee, Sang-Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.124-134
    • /
    • 2012
  • Environmental concerns over the use of fossil fuels and their resource constraints have spurred increasing interest of renewable energy, and the needs for energy storage from the renewable resources is getting rapidly increase. Na/$NiCl_2$ cell could be use electric vehicles as well as energy storage, because it has a high energy-efficiency, environmental-friendly, low cost. However, there remain several issues on improvement of materials, component, cell design, and process, to use in broad applications and to penetrate to market. This paper offers a comprehensive review on R&D status of the structure, chemistry, key materials, and cell design & manufacture for Na/$NiCl_2$ cells.

Crystalline Properties of Carbon Nitride films According to Substrates and Growth Conditions (기판과 성장조건에 따른 질화탄소막의 결정성장 특성)

  • 이지공;이성필
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12
    • /
    • pp.1103-1109
    • /
    • 2003
  • Crystalline carbon nitride films have been deposited by RF reactive magnetron sputtering system with negative DC bias. The carbon nitride films deposited on various substrates showed ${\alpha}$- C$_3$N$_4$,${\beta}$-C$_3$N$_4$ and lonsdaleite structures through XRD and FTIR We can find the grain growth of hexagonal structure from SEMI photographs, which is coincident with the theoretical carbon nitride unit cell. When nitrogen gas ratio is 70 % and RF power is 200 W, the growth rate of carbon nitride film on quartz substrate is about 2.1 $\mu\textrm{m}$/hr.

Cycle Analysis of an Alkali Metal Thermo-Electric Converter for Small Capillary Type (소형 모세관식 알카리 금속 열전변환소자의 사이클해석)

  • Yoon, Suk-Goo;Ku, Jae-Hyun;Lee, Jae-Keun;Tanaka, Kotaro
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.956-961
    • /
    • 2000
  • This paper describes the design of a small size Alkali Metal Thermal to Electric Converter (AMTEC) which employs a capillary structure for recirculating sodium working fluid. The cycle is based on the simple and small capillary type ${\beta}"$ -alumina and wick tube element. The proposed cell consists of the 37 conversion elements with capillary tube of $50{\mu}m$ in diameter and the sealed cylindrical vessel of 22mm in outer diameter. Results on the cycle analysis of sodium flow and heat transfer in the cell showed that the expected power output was 4.65W and the conversion efficiency was 19% for the source temperature of 900K.

  • PDF