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ABSTRACT

This review paper analyzed a Young’s modulus (E), a thermal expansion coefficient (TEC, β) and a thermal conductivity (κ) of

the material with simple cubic particulate inclusion using two model structures: a parallel structure and a series structure of

laminated layers. The derived β equations were applied to calculate the β value of the W-MgO system. The accuracy was higher

for the series model structure than for the parallel model structure. Young’s moduli (E
c
) of sintered porous alumina compacts

were theoretically related to the development of neck growth of grain boundary between sintered two particles and expressed as

a function of porosity. The series structure model with cubic pores explained well the increased tendency of E
c
 with neck growth

rather than the parallel structure model. The thermal conductivity of the three phase system of alumina–mullite–pore was cal-

culated by a theoretical equation developed in this research group, and compared with the experimental results. The pores in the

sintered composite were treated as one phase. The measured thermal conductivity of the composite with 0.5–25% porosity (open

and closed pores) was in accordance with the theoretical prediction based on the parallel structure model.
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1. Introduction

n a previous paper,1) a wide variety of thermal conductiv-

ity (κ) of metals and ceramics is discussed with a har-

monic oscillator model of lattice vibration. The theoretical

approach succeeded in representing κ with atomic weight,

Young’s modulus (E) and density (ρ). The E and ρ values are

closely related to the nature of chemical bond (metallic,

covalent and ionic bond). A very good agreement is observed

between the measured and calculated κ values in the wide

range from 1 to 2310 J/smK. The next interesting is the the-

oretical expression of thermal conductivity for the material

with inclusion (second phase or pore). Wang and Pan2) sum-

marize mixing rules of thermal conductivity for composite

materials. The thermal conductivities of two phase systems

have been analyzed using parallel model, series model,

EMT (effective medium theory) model, Maxwell model,

Hamilton model and reciprocity model in their review.2) The

thermal conductivity for a more complex structure with two

continuous phases3) or for a hollow bricks structure4) is also

analyzed. In our previous papers,5,6) an effective thermal

conductivity equation of multiphase systems was theoreti-

cally derived. This equation (κ
ap

) of two phase system can be

expressed by three parameters of κ
1
 for inclusion, κ

2
 for a

continuous phase and volume fraction V
1
 of inclusion. The

newly derived κ
ap

 equation for two phase system was com-

pared with the measured κ
ap

 for the AlN particles-dispersed

SiO
2
 continuous phase system in our previous paper.5) A

very nice agreement was shown for the measured and calcu-

lated κ
ap

 values. Thermal conductivities were also calcu-

lated for the refractory brick of carbon–alumina–pore

system, carbon–alumina–silicon carbide–pore system and

carbon–alumina–silica–pore system.6) The three or four

phase model reflects the microstructure of the refractory

brick and predicts the maximum and minimum conductivi-

ties in parallel and perpendicular directions to c-axis of

graphite. The experimental thermal conductivities were

measured in the range predicted from the calculation and

very close to the average value of calculated maximum and

minimum conductivities. 

The desirable mixing rule is to be expressed by less avail-

able well known parameters. A model structure of material

with simple cubic inclusion, which was used in the calcula-

tion of the thermal conductivity of composite,5) was applied

to the derivation of a mixing rule of linear thermal expan-

sion coefficient (TEC) of a composite material.7) The derived

mixing rule was compared with the reported data of the W–

MgO system presented in the text book.8) A very good agree-

ment was shown between the reported and calculated

TECs. The newly derived mixing rule was also compared

with the reported Turner’s equation and Kerner’s equa-

tion.8) As compared with the previously developed two equa-

tions, the mixing rule in our previous paper was closer to

the measured TEC of the W-MgO system. In our recent

paper,7) Young’s modulus of the material with simple cubic

I
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particulate inclusion was derived and subsequently Young’s

modulus of the inclusion was treated to be 0 GPa for a

porous material. The calculated Young’s moduli (parallel

and series structure models) for porous alumina compacts

were compared with the measured data and explained well

the experimental data.9) This review paper summarizes the

above theoretical mixing rules of thermal conductivity,

Young’s modulus and thermal expansion coefficient for two

proposed microstructures with cubic inclusion (Fig. 1 and 2).

2. Model Structures

Figure 1 shows a simple cubic inclusion model with length

a in one cubic box with length 1/p.5) The number (n) and the

volume fraction (V) of cubic inclusion in unit volume of the

composite are related by V = a3n. The number (p) of inclu-

sion along one direction of cubic composite is equal to n1/3

(= V1/3/a) and the distance between two inclusion is given by

(1/p − a). The structure surrounded by dotted lines (Fig. 1(b))

represents the liner connection of inclusion and matrix.

This structure of Fig. 1(b) is sandwiched by two layers of a

continuous matrix phase as shown in Fig. 1(c) (unit cell

structure). We also treat the model structure in Fig. 1(a) as

the connection of rectangular composite (b) and the rectan-

gular continuous phase 2 shown in Fig. 2. The reason why

the cubic shape inclusion was employed is that the cubic

shape facilitates the calculation of the area mechanically

loaded which is required to calculate the Young’s modulus

and thermal expansion coefficient. The shape and size of

inclusions ultimately disappear in the final equation as

shown in Tables 1 and 2. Therefore, the presented model

equation would be available for obtaining the approximated

values in the case of spherical inclusion.

Table 1 summarizes the Young’s modulus (E) and thermal

expansion coefficient (TEC, β) of a composite in a parallel

structure shown in Fig. 1. The derivation of the equations in

Table 1 are reported in Ref. 7. We analyze Eq. (1) for the fol-

lowing specific cases.

(a) V = 0

This condition leads to the following relationship: E
c
 = E

2
,

β
b
 = β

2
, E

b
 = E

2
. These relations are substituted for Eq. (1)

and result in β
c
 = β

2
. The TEC of composite (c) is equal to

that of the continuous phase 2.

(b) V = 1

Fig. 1. A parallel model structure of material with simple
cubic inclusion with length a. The geometrical fea-
tures are shown in Fig. 1(b) and (c).

Fig. 2. A series model structure of material with simple
cubic inclusion with length a. The geometrical fea-
tures are shown in Fig. 2(b) and (c).

Table 1. Summary of Young’s Modulus (E) and Thermal Expan-
sion Coefficient (β) of Composite in a Parallel Struc-
ture shown in Fig. 17)

  (composite c)                     (1)

        (composite b)                      (2)

β
b
 = β

1
V1/3 + β

2
(1 − V1/3)          (composite b)                      (3)

Denominator of Eq. (1) = E
c

                                     (4)

E
1
: Young’s modulus of dispersed phase 1

E
2
: Young’s modulus of continuous phase 2

E
b
: Young’s modulus of composite (b) in Fig. 1(b)

E
c
: Young’s modulus of composite (c) in Fig. 1(c)

V: Volume fraction of dispersed phase 1

β
1
: Thermal expansion coefficient of dispersed phase 1

β
2
: Thermal expansion coefficient of continuous phase 2

β
b
: Thermal expansion coefficient of composite (b) 

in Fig. 1(b)

β
c
: Thermal expansion coefficient of composite (c) 

in Fig. 1(c)

βc
EbV

2/3βb E2 1 V
2/3

–( )β2+

EbV
2/3

E2 1 V
2/3

–( )+
-------------------------------------------------------------=

Eb

E1E2

E2V
1/3

E1 1 V
1/3

–( )+
--------------------------------------------------=

 E2 E2V
2/3

1
1

1 V
1/3

– 1
E2

E1

------–⎝ ⎠
⎛ ⎞

-------------------------------------––=
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The following relation is derived: E
c
 = E

b
 = E

1
, β

b
 = β

1
. The

β
c
 of Eq. (1) results in β

c
 = β

b
 = β

1
 and is equal to the TEC of

dispersed phase 1.

(c) E
1
 = 0 GPa

This condition means the formation of pores in a continu-

ous phase 2 and leads to the relation of E
b
 = 0.

E
c
 = E

2
(1 − V2/3) (5)

β
c
 = β

2
(6)

 

In this case, the Young’s modulus of the porous solid

decreases as a function of porosity as presented by Eq.  (5).10)

However, the TEC of the porous material is independent of

porosity and equal to that of the continuous phase.10) This

theoretical prediction is discussed in the latter part.

Eq. (1) is derived for the two phase composite. However,

this equation is easily extended to a multiphase system.6) In

the three phase system of dispersed phase 1 (volume frac-

tion V
1
), continuous phase 2 (volume fraction V

2
) and dis-

persed phase 3 (volume fraction V
3
), we calculate at first the

relation summarized in Table 1 for phases 1 and 2. A care is

taken to the calculation of volume fraction of phase 1. The V

in Table 1 is changed to V
1
 / (V

1
 + V

2
) where V

1
 + V

2
 + V

3
 = 1.

The phase 3 is dispersed in a new continuous phase where

phase 1 is included in the original continuous phase 2.

Therefore, repeating two times the calculation summarized

in Table 1 provides the β
c
 value for three phase system. The

calculation in Table 1 is repeated to determine the final β
c
,

depending on the number of phases included in the compos-

ite. 

Table 2 summarizes the Young's modulus (E) and TEC (β)

of composite in a series structure of composite (b) and phase

2 in Fig. 2.7) We analyze Eq. (7) for the following specific

cases.

(a) V = 0

This condition leads to the relationship of E
d
 = E

2
 = E

c
 and

β
d
 = β

2
 = β

c
. The TEC of composite (a) is equal to that of the

continuous phase 2.

(b) V = 1

The following relation is derived: E
d
 = E

1
 = E

c
, β

d
 = β

1
 = β

c
.

That is, the β
c
 is equal to the TEC of a dispersed phase.

(c) E
1
 = 0 GPa

This condition means the formation of pores in the contin-

uous phase 2 and leads to the relation.

E
d 
= E

2
(1 − V2/3) (11)

(12)

β
c
 = β

2
[V1/3 + (1 − V1/3)(1 − V2/3)] (13)

Eq. (11) is same as Eq. (5) and the Young’s modulus and

the TEC of porous composite (a) change with porosity. 

3. Comparison of Reported TEC and 
Calculated TEC of Composite 

for W–MgO System

In this section, we compare the calculated TEC with the

TEC reported in the W–MgO composite.8) Fig. 3 shows the

reported TEC of W–MgO composite as a function of volume

fraction of MgO. MgO has a larger TEC than W. The TEC of

the W–MgO composite was calculated in two cases: (1) dis-

persed MgO phase – continuous W phase system and (2)

dispersed W phase – continuous MgO phase system. Both

the cases in the parallel structure model (Fig. 1) provide the

same E
c
 and β

c
 values at a same fraction of MgO, indicating

that the distinction of dispersed and continuous phases is

not needed and only the fraction of included phase is import-

ant to the calculation of TEC of composite. Fig. 3(a) shows

the calculated TEC for the W–MgO system. The following

values were used in the calculation11): E
1
 = 354 GPa and β

1
 =

4.5 × 10−6 K−1 for W, E
2
 = 310 GPa and β

2
 = 13.5 × 10−6 K−1

for MgO. The calculated TEC was close to the reported TEC.

1
Ec

------
V

1/3
1 V

1/3
–( ) 1 V

2/3
–( )+

E2 1 V
2/3

–( )
----------------------------------------------------------=

Table 2. Summary of Young’s Modulus (E) and Thermal Expan-
sion Coefficient (β) of Composite in a Series Structure
Shown in Fig. 27)

                             (composite c)                     (7)

Ε
d
 = E

1
V2/3 + E

2
(1 − V2/3)          (composite b)                      (8)

                     (composite c)                      (9)

 (composite b)                  (10)

E
1
: Young’s modulus of dispersed phase 1

E
2
: Young’s modulus of continuous phase 2

E
d
: Young’s modulus of composite (b) in Fig. 2(b)

E
c
: Young’s modulus of composite (c) in Fig. 2(c)

V: Volume fraction of dispersed phase 1

β
1
: Thermal expansion coefficient of dispersed phase 1

β
2
: Thermal expansion coefficient of continuous phase 2

β
d
: Thermal expansion coefficient of composite (b) 

in Fig. 2(b)

β
c
: Thermal expansion coefficient of composite (c) 

in Fig. 2(c)

βc

Ed

Ec

------⎝ ⎠
⎛ ⎞βd=

1
Ec

------
V

1/3

Ed

----------
1 V

1/3
–

E2

-----------------+=

βd
E1V

2/3β1 E2 1 V
2/3

–( )β2+

E1V
2/3

E2 1 V
2/3

–( )+
-------------------------------------------------------------=
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The maximum difference between two TECs was 1.3 × 10−6

K−1 at 64.2 vol% MgO. 

Figure 3(b) and (c) show the TECs calculated by Eq. (7) for

(b) MgO dispersed phase – W continuous phase system and

(c) W dispersed phase – MgO continuous phase system,

respectively. In Eq. (7), the distinction of the dispersed and

the continuous phases provided the different calculated

results. As seen in Fig. 3(c), the calculated result showed a

very nice correspondence with the reported TEC values. The

above comparison suggests that the application of a stress

to the series structure shown in Fig. 2(c) explains well the

thermal expansion of the composite with particulate inclu-

sion. This model is superior to the parallel structure model

shown in Fig. 1(c) for the accurate representation of the

TEC of composite. In addition, the comparison of the mea-

sured TEC and calculated TEC (Eq. (7)) gives the informa-

tion of the microstructure related to the dispersed and

continuous phases.

4. Young’s Modulus of Sintered Porous 
Alumina Compact

Figures 4 and 5 show the normalized Young’s moduli (E
c
/

E
2
, Eqs. (5) and (12)) of sintered alumina compacts as a

function of normalized grain boundary area between two

sintered particles (πy2/πr
0

2). The y value is the radius of cir-

cular grain boundary and the r
0
 value is the radius of initial

particles. The detailed analysis of sintering behaviour was

reported in our previous papers.9,12,13) The (y/r
0
) ratio was

determined from the measured specific surface area (S) for

a sintered porous alumina compact. Once the S/S
0
 ratio (S

0
:

specific surface area before sintering) is measured, we can

calculate the open porosity (V
p
) for a given particle coordina-

tion number (n). The measured V
p
 values decreased nonlin-

early with the neck growth ((y/r
0
)2) of grain boundary. This

tendency was well expressed by the proposed sintering

model. To measure the compressive Young’s modulus (E
2
)

for a fully dense alumina compact, the consolidated alumina

powder in a graphite mold was hot-pressed at 1500°C for 2

h in an Ar atmosphere. After the hot-pressing, the densified

alumina compact was annealed in air at 1000°C for 6 h. The

relative density of the dense alumina compact was 99.8%.

The measurement of compressive Young’s modulus of the

dense polycrystalline alumina compact was repeated five

times and the average value was 191.8 ± 10.7 GPa. This

value was very close to the average stiffness (187 GPa) of

single crystal Al
2
O

3
, reported in our previous paper.14) The

measured Young’s modulus was used as a E
2
 value in Fig. 4

and 5 to normalize the Young’s modulus of the sintered

porous alumina compact. As seen in Figs. 4 and 5, the mea-

sured E
c
/E

2
 ratio increased as the neck growth of grain

boundary was developed. The increased tendency of E
c
/E

2

ratio with neck growth was well represented by the theoret-

ical model curves (Eqs. (5) and (12)) for the calculated and

Fig. 3. Thermal expansion coefficient of the W-MgO compos-
ite.7)

Fig. 4. Comparison of measured and calculated Young’s
moduli for sintered porous alumina compacts based
on a parallel structure of material with simple cubic
inclusion.9)

Fig. 5. Variation of Young’s modulus of sintered alumina
compacts with normalized grain boundary area based
on a series structure.9)
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measured V
p
 values. The E

c
/E

2
 ratios by Eqs. (5) and (12)

became larger for the V
p
 value based on S value than for the

measured V
p
 value because of the relationship of V

p
 based

on S < measured V
p
. As seen in Figs. 4 and 5, the measured

E
c
/E

2
 ratios were well expressed by Eqs. (12) (series struc-

ture model in Fig. 2(c)) rather than Eqs. (5) (parallel struc-

ture model in Fig. 1(c)) for the V
p
 values based on S values.

The relatively good agreement between the measured val-

ues and calculated values for E
c
 values in Fig. 5 concludes

that (1) neck growth during sintering of spherical particles

in a random close packing structure eliminates the pores

included in the powder compact, (2) this decrease in the

porosity causes increase in the Young’s modulus, (3) only

the measurement of S value is enough to provide the theo-

retical prediction of both the V
p
 and E

c
 curves for the given n

and E
2
 values and (4) Eq. (12) for the S-based V

p
 value is in

agreement with the measured E
c
 values of sintered porous

alumina compacts.

5. Thermal Conductivity 
of the Alumina–mullite–pore System

Eq. (4) in Table 1 and Eq. (9) in Table 2 are the same Eqs.

as the thermal conductivities (κ
c
) of composites with partic-

ulate inclusion when E is changed to κ. In the calculation of

κ
c
, a flux (I) of energy is input to the composites (Figs. 1 and

2) instead of a stress. As explained in Section 2, the thermal

conductivity (κ
b
) of three phase system for Fig. 1(c) is

expressed by Eq. (14),

(14)

where κ
ap

 is given by Eq. (4) in Table 1 (E is changed to κ)

and phase 1 is treated as pore (air) and κ
1
 is 0.0265 W/mK

at 300 K.15) Care is to be taken to determine the value of V
1

in three phase system, as discussed in Section 2. Calcula-

tion of κ
b
 was carried out for two cases: Case A – mullite

continuous phase (κ
2
: 6.07 W/mK at 373 K16)), Case B – alu-

mina continuous phase (κ
2
: 36 W/mK at 300 K15)). In case

A, alumina particles were treated as a dispersed phase 3

in Eq. (14). Similarly, mullite particles were treated as a

dispersed phase 3 in case B. When the pore size is less than

a molecular mean free path of gas, the thermal conductivity

is affected by the pore size. Generally, the pore sizes of a

refractory material are larger than the molecular mean free

path. Thus, the difference between open and closed pores

causes little influence on E, κ and TEC.

Figure 6(a) - (d) show the schematic structures of mullite–

alumina–pore system along the κ
b
 line (parallel structure

model) at V
1
 (porosity) = 20 vol%. At point (a) (V

3
 (alumina) = 0

vol%), pores of V
1
 = 20 vol% are dispersed in a mullite con-

tinuous phase.17) The addition of Al
2
O

3
 particles in a mullite

continuous phase, which causes the decrease of volume frac-

tion of mullite phase, increases slightly the κ
b
 value because

of the relationship of κ
ap

 (pore-containing mullite phase) < κ
3

(alumina particles). However, the κ
b
 value starts to decrease

above V
3
 = 70 vol% (Fig. 6(c)) and reaches the lowest value

at V
3
 = 80 vol% where a mullite continuous phase disap-

pears (Fig. 6(d)). In the V
3
 range of 70 to 80 vol%, the contin-

uous phase changes from mullite to air and alumina

particles with a higher thermal conductivity is separated

from another Al
2
O

3
 particles by air. Therefore, introduction

of continuously distributed pores has a significant effect to

decrease the κ
b
 value of dense two phase systems. 

Figure 7 shows the measured and calculated thermal con-

ductivities for the alumina–mullite–pore system.17) The cal-

culation (Eq. (14)) contained the influence of pores. As seen

in Fig. 7, a very nice agreement was observed between the

measured κ
b
 value and the calculated κ

b
 value for a mullite

continuous phase. The thermal conductivity of alumina

phase with pores was also simulated by the proposed model,

which provided the higher thermal conductivities than the

measured values. The above comparison of κ
b
 values sug-

κb κap κapV3
 2/3

1
1

1 V3
1/3

1
κap

κ3

--------–⎝ ⎠
⎛ ⎞–

--------------------------------------––=

Fig. 6. Relationship between the model structure and the
calculated thermal conductivity (Eq. (14)) for alu-
mina–mullite–pore system. V

1
: volume fraction of

pore; V
2
: mullite volume fraction (continuous phase);

V
3
: alumina volume fraction.

Fig. 7. Comparison of the thermal conductivities between
the measurement and the calculation (Eq. (14)) for
the alumina–mullite–pore system.17)
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gests that the pores in the alumina–mullite–pore system

are included in the mullite continuous phase. 

Figure 8 shows the thermal conductivity of 50 vol% alu-

mina–50 vol% mullite system as a function of porosity (open

and closed pores). The solid lines indicate the calculated val-

ues (Eq. (14)) for (a) the alumina continuous phase and (b)

the mullite continuous phase. The measured thermal con-

ductivity is well explained by the calculation for the mullite

continuous phase. The proposed thermal conduction model

is effective for the composite containing at least 25 vol%

porosity. The comparison of measured and calculated κ
b
 val-

ues in Figs. 7 and 8 suggests that the phase with a lower κ

value (mullite) can be treated as a continuous phase and

provides a significant influence on the thermal conductivity

of a composite material.

The thermal conductivity (κ
b
) of three phase system for

Fig. 2(c) (series structure model) is expressed by Eq. (15), 

(15)

where κ
ap

 is given by Eq. (9) in Table 2 (E is changed to κ)

and phases 1, 2 and 3 are treated as dispersed pore, contin-

uous mullite (or alumina) phase and dispersed alumina (or

mullite) phase, respectively. Fig. 9 shows the comparison of

the measured and calculated thermal conductivities for the

alumina–mullite–pore system. As compared with the result

in Fig. 7, both the calculated conductivities for alumina con-

tinuous phase and mullite continuous phase in the series

structure (Fig. 9) became higher than the measured ther-

mal conductivity. That is, the parallel structure model in

Fig. 1(c) reflects well the mixing rule of the thermal conduc-

tivity for a composite material. 

6. Conclusions

The Young’s modulus (E) and the linear thermal expan-

sion coefficient (β) of the composite with particulate inclu-

sion were analyzed using two laminate model structures: a

parallel structure model of the rectangular composite

(series connection of dispersed phase 1 and continuous

phase 2) and the continuous phase 2 surrounding the rect-

angular composite, and a series structure of the rectangular

composite (parallel connection of dispersed phase 1 and con-

tinuous phase 2) and rectangular continuous phase 2. The

newly derived β Eqs. for both the model structures can be

represented by β
1
 of the inclusion, β

2
 of the continuous

phase, V of the volume fraction of inclusion, E
1
 of the inclu-

sion and E
2
 of the continuous phase. The calculated β for the

W–MgO composite was compared with the reported β value.

The series structure of the composite is superior to the par-

allel structure model for the correspondence with the mea-

sured TEC of the composite. The Young's modulus (E
c
) of

sintered porous alumina ceramics was also derived from the

mixing rule of E
1
 of a dispersed phase and E

2
 of a continu-

ous phase for the proposed laminated model structure of

composite. The series structure model explained well the

increased tendency of E
c
 with neck growth rather than the

parallel structure model. A theoretical thermal conductivity

(κ
b
) of alumina–mullite–pore system was calculated for two

cases: mullite continuous phase and alumina continuous

phase for the proposed two laminated model structures. In

the parallel structure model, a very nice agreement was

observed between the measured κ
b
 value and the calculated

κ
b
 value for the mullite continuous phase. The phase with a

lower κ value (mullite) can be treated as a continuous phase

and provides a significant influence on the thermal conduc-

tivity of a composite material. The theoretical thermal con-

ductivity for the parallel structure model can also explain

the porosity dependence of thermal conductivity at least 25

vol% porosity. As compared with the parallel structure

model, the calculated κ
b
 value for the series structure model

did not correspond with the measured κ
b
 value.

1
κb

-----
1 V3

 1/3
–

κap

------------------
V3
 1/3

κbV3
 2/3

1 V3
 2/3

–( )κap+
----------------------------------------------------+=

Fig. 8. Effect of the porosity on the thermal conductivity of
alumina–mullite–pore system.17)

Fig. 9. Measured thermal conductivities of the alumina–
mullite–pore system and the calculated thermal con-
ductivities for a series structure (Fig. 2(c), Eq. (15)).



January  2016         Mixing Rules of Young's Modulus, Thermal Expansion Coefficient and Thermal Conductivity of ... 49

REFERENCES

1. Y. Hirata, “Thermal Conduction Model of Metal and

Ceramics,” Ceram. Inter., 35 3259-68 (2009).

2. M. Wang and N. Pan, “Predictions of Effective Physical

Properties of Complex Multiphase Materials,” Mater. Sci.

Eng., R63 1-30 (2008).

3. J. Wang, J. K. Carson, M. F. North, and D. J. Cleland, “A

New Structural Model of Effective Thermal Conductivity

for Heterogeneous Materials with Co-Continuous Phases,”

Inter. J. Heat Mass Transfer, 51 2389-97 (2008).

4. A. Bouchair, “Steady State Theoretical Model of Fired Clay

Hollow Bricks for Enhanced External Wall Thermal Insu-

lation,” Building and Environment, 43 1603-18 (2008).

5. Y. Hirata, “Representation of Thermal Conductivity of

Solid Material with Particulate Inclusion,” Ceram. Inter.,

35 2921-26 (2009).

6. Y. Hirata, N. Matsunaga, J. Yoshitomi, and T. Kayama,

“Theoretical Analysis of Thermal Conductivity of Graphite-

Containing Refractory Brick,” J. Tech. Assoc. Refract.

Japan, 31 [3] 156-63 (2011).

7. Y. Hirata, “Representation of Thermal Expansion Coeffi-

cient of Solid Material with Particulate Inclusion,” Ceram.

Inter., 41 2706-13 (2015).

8. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduc-

tion to Ceramics; pp. 583-624, Second Ed., John Wiley &

Sons, New York, 1976.

9. Y. Hirata and T. Shimonosono, “Theoretical Prediction of

Compressive Strength, Young's Modulus and Strain at

Fracture of Sintered Porous Alumina Compacts,” Ceram.

Inter., 42 3014-18 (2016).

10. D. Hull and T. W. Clyne, An Introduction to Composite

Materials; pp. 237-44, Second Ed., Cambridge University

Press, Cambridge, 1996.

11. K. Hata, Chemical Handbook, Basic Part II; pp. 21-22, 3rd

ed., The Chemical Society of Japan, Maruzen, Tokyo, 1984.

12. Y. Hirata, T. Shimonosono, T. Sameshima, and S.

Sameshima, “Compressive Mechanical Properties of Porous

Alumina Powder Compacts,” Ceram. Inter., 40 2315-22

(2014).

13. Y. Hirata, T. Shimonosono, S. Sameshima, and H. Tomi-

naga, “Sintering of Alumina Powder Compacts and Their

Compressive Mechanical Properties,” Ceram. Inter., 41

11449-55 (2015).

14. Y. Hirata, “Theoretical Analyses of Thermal Shock and

Thermal Expansion Coefficients of Metals and Ceramics,”

Ceram. Inter., 41 1145-53 (2015).

15. K. Hata, Chemical Handbook, Basic Part II; pp. 72-7, 3rd

Ed., The Chemical Society of Japan, Maruzen, Tokyo, 1984.

16. R. F. Davis and J. A. Pask, “Mullite,”, pp. 37-75 in High

temperature oxide, part IV. Ed. by A.M. Alper, Academic

Press, New York, 1971.

17. S. Itoh, Y. Hirata, T. Shimonosono, and S. Sameshima,

“Theoretical and Experimental Analyses of Thermal Con-

ductivity of the Alumina-Mullite System,” J. Eur. Ceram.

Soc., 35 605-12 (2015).


