Browse > Article
http://dx.doi.org/10.3740/MRSK.2010.20.2.55

Mg Atom Substitution for Nonstoichiometric Na+ β-Alumina: A First Principles Study  

Kim, Dae-Hyun (Department of Materials Engineering, Korea University of Technology and Education)
Kim, Dae-Hee (Department of Materials Engineering, Korea University of Technology and Education)
Jeong, Yong-Chan (Department of Materials Engineering, Korea University of Technology and Education)
Seo, Hwa-Il (School of Information Technology, Korea University of Technology and Education)
Kim, Yeong-Cheol (Department of Materials Engineering, Korea University of Technology and Education)
Publication Information
Korean Journal of Materials Research / v.20, no.2, 2010 , pp. 55-59 More about this Journal
Abstract
$Na^+$ ion conductivity can be improved by the substitution of an Mg atom for an Al atom to form a nonstoichiometric $Na^+$ $\beta$-alumina. We performed a first principles study to investigate the most stable substitution site of an Mg atom and the resulting structural change of the nonstoichiometric $Na^+$ $\beta$-alumina. Al atoms were classified as four different layers in the spinel block that are separated by conduction planes in the nonstoichiometric $Na^+$ $\beta$-alumina. The substitution of an Mg atom for an Al atom at a tetragonal site was more favorable than that at an octahedral site. The substitution in the spinel block was more favorable than that close to the conduction plane. This result was well explained by the volume changes of the polyhedrons, by the standard deviation of the Mg-O distance, and by the comparison with bulk MgO structure. Our result indicates that the most preferable site for the Mg atom was the tetrahedral site at the spinel block in the nonstoichiometric $Na^+$ $\beta$-alumina.
Keywords
$Na^+$ $\beta$-alumina; Mg substitution; density functional theory; nonstoichiometry;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 D. McWhan, P. Dernier, C. Vettier, A. Cooper and J. Remeika, Phys. Rev. B, 17(10), 4043 (1978).   DOI
2 G. Mariotto, E. Cazzanelli and E. Zanghellini, Solid State Ionics, 57(1-2), 21 (1992).   DOI   ScienceOn
3 B. Hafskjold and X. Li, J. Phys. Condens. Matter, 7(15), 2949 (1995).   DOI   ScienceOn
4 M. Alden, Solid State ionics, 20(1), 17 (1986).   DOI   ScienceOn
5 H. Sato and R. Kikuchi, J. Chem. Phys., 55(2), 677 (1971).   DOI
6 T. B. Kim, H. Y. Ahn and H. Y. Hur, Kor. J. Mater. Res., 16(3), 193 (2006).   DOI   ScienceOn
7 Y. Yao and J. Kummer, J. Inorg. Nucl. Chem., 29(9), 2453 (1967).   DOI   ScienceOn
8 X. Hayes, L. Holden and B. Tofield, Solid State Ionics, 1(5-6), 373 (1980).   DOI   ScienceOn
9 W. Roth, Trans. Am. Cryst. Assoc., 11(1), 51 (1975).
10 M. Zendejas and J. Thomas, Physica Scripta, T33(1), 235 (1990).   DOI   ScienceOn
11 M. Zendejas and J. Thomas, Physica Scripta, 47(3), 440 (1993).   DOI   ScienceOn
12 G. K. Edstrom, J. Thomas and Farrington, Acta Cryst. B, 47(2), 210 (1991).   DOI
13 S. Allen, A. Cooper, F. DeRosa, J. Remeika and S. Ulasi, Phys. Rev. B, 17(10), 4031 (1978).   DOI
14 G. Kresse and J. Furthuller, Phys. Rev. B, 54(16), 11169 (1996).   DOI   ScienceOn
15 T. Mathews, R. Subasri and O. Sreedharan, Solid State Ionics, 148(1-2), 135 (2002).   DOI   ScienceOn
16 G. Kresse and J. Hafner, Phys. Rev. B, 47(1), 558 (1993).   DOI   ScienceOn
17 G. Kresse and J. Furthuller, Comput. Mat. Sci., 6(1), 15 (1996).   DOI   ScienceOn
18 G. Kresse and D. Joubert, Phys. Rev. B, 59(3), 1758 (1999).   DOI   ScienceOn
19 D. Vanderbilt, Phys. Rev. B, 41(11), 7892 (1990).   DOI   ScienceOn
20 D. M. Wood and A. Zunger, J. Phys. A, 18(9), 1343 (1985).   DOI   ScienceOn
21 P. Pulay, Chem. Phys. Lett., 73(2), 393 (1980).   DOI   ScienceOn
22 S. Hendricks and L. Pauling, Z. Kristallogr., 64(3), 303 (1926).
23 J. Walker and C. Catlow, J. Phys. C Solid State Phys., 15(30), 6151 (1982).   DOI   ScienceOn