• Title/Summary/Keyword: $\beta$-TCP

Search Result 114, Processing Time 0.025 seconds

Effects of different sizes of Hydroxyapatite/$\beta$-Tricalcium phosphate particles on vertical bone augmentation (수직골 증대술에서 $\beta$-Tricalciumphosphate/Hydroxyapatite 골 이식재 입자 크기의 영향)

  • Huh, Jung-Bo;Jung, Dong-Hee;Kim, Ji-Sun;Shin, Sang-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.4
    • /
    • pp.259-265
    • /
    • 2010
  • Purpose: This study was aimed to evaluate the effect of different sizes of $\beta$-TCP/ HA particles on vertical bone augmentation using titanium mesh in the cranium of rabbits. Materials and methods: Six white rabbits weighing 5kg were used. Four circular grooves of 6mm diameter were made by trephine, and five small holes were drilled in the inner surface of each circular gooves. Different sizes of grafts (small 0.3 - 0.5 mm, medium 0.5 - 1.0, large 1.0 - 2.0 mm) were placed respectively in the experimental groups. Titanium mesh (height 3 mm, width 6 mm) was placed. After 8weeks healing period, the rabbits were euthanized, and the specimens were prepared for histological findings. New bone formation and remaining graft area were measured to calculate the ratio of areas occupying the inner space of titanium mesh. Mann-Whitney U-test and Wilcoxon signed rank-test were used for statistical analysis ($\alpha$ = .05). Results: The experimental groups with $\beta$-TCP/HA graft showed a significantly higher new bone formation (P = .003). Comparing different sizes of $\beta$-TCP/HA, there was no statistical difference in terms of new bone formation. The vertical bone formation (i.e. new bone and graft area) was significantly greater in $\beta$-TCP/HA groups (P = .001). In comparison between different sizes of $\beta$-TCP/HA, medium size group had significantly greater area than large particle size group (P = .039). Conclusion: The use of $\beta$-TCP/HA with titanium mesh showed a higher vertical bone formation, particularly the medium sized $\beta$-TCP/HA particles (0.5 - 1.0 mm) produced better results in vertical bone augmentation.

Precipitation of Calcium Phosphate at pH 5.0 for the β Tri-calcium Phosphate Cement

  • Chang, Myung Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.4
    • /
    • pp.275-279
    • /
    • 2013
  • The purpose of this study was to prepare calcium phosphate cement [CPC] for use in artificial bone. Nano-crystalline calcium phosphate [CaP] was precipitated at $37^{\circ}C$ using highly active $Ca(OH)_2$ in DI water and an aqueous solution of $H_3PO_4$. From the XRD measurements, the nano-CaP powder was close to apatitic TCP phase and the powders fired at $800^{\circ}C$ showed a critical ${\beta}$-TCP phase. A mixture of one mole $CaCO_3$ and two moles di-calcium phosphate was calcined at $1100^{\circ}C$ to make a reference ${\beta}$-TCP material. The nano-CaP powders were added to the normal ${\beta}$-TCP matrix and fired at $900^{\circ}C$ to make a ${\beta}$-TCP block. The sintered block showed improved mechanical strength, which was caused by the solid state interaction between nano-CaP and normal ${\beta}$-TCP.

Bone Cements in TTCP, DCPA, β-TCP and PHA System (TTCP-DCPA-β-TCP-PHA계 골 시멘트)

  • ;;;Rainer Telle
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.57-67
    • /
    • 2002
  • The effect of $\beta$-TCP and PHA as additives on initial setting time, compressive strength and surface micro-structure after in vitro test of bone cement in TTCP and DCPA system was investigated. The median particle sizes of TTCP, $\beta$-TCP, DCPA and PHA for bone cement were about 3, 5, 0.9 and 4${\mu}{\textrm}{m}$, respectively. Initial setting time and compressive strength of bone cement with various composition was measured by Vicat test and Universal Testing Machine, and surface morphology and crystalline phases of bone cements were observed and analyzed by SEM and x-ray diffractometer. Initial setting time was not affected by composition but by powder/liquid ratio, and cement with PHA required double amount of solution for paste as much as one without PHA, especially. It was thought that $\beta$-TCP and PHA in bone cements was not related to setting reaction. Thus, the addition of $\beta$-TCP and PHA in bone cements decreased compressive strength and inhabited HAP from being produced on surface in vitro test. In conclusion, it was not expected that $\beta$-TCP and PHA in TTCP-DCPD bone cements enhanced the strength and bioacitivity.

Improved Injection Behavior with the Addition of Granulated β-Tricalcium Phosphate in Brushite Bone Cement

  • Jo, Hyun-Ho;Oh, Kyung-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.6
    • /
    • pp.590-596
    • /
    • 2018
  • To improve the injection behavior of brushite cement, dense ${\beta}-Ca_3(PO_4)_2$ (${\beta}-TCP$) granules were added to the starting material. The spherical ${\beta}-TCP$ granules prepared by spray-drying and subsequent sintering at $1000{\sim}1200^{\circ}C$ accounted for fractions of from 0.5 to 0.7 of the total ${\beta}-TCP$. The injection behavior was evaluated by measuring the injected mass divided by the loaded mass of paste in the syringe pump. The injected amount was increased with the increase in the fraction and sintering temperature of ${\beta}-TCP$ granules, except at $1200^{\circ}C$. The increase in the fraction of ${\beta}-TCP$ and its sintering temperature resulted in a decrease in the plastic limit, which is the volume of water required to liquefy the compact. The rest water could be utilized in the cement with the reduced plastic limit for improved injectability. The amounts of rest water assigned for powdery phase were estimated, and correlated with the injectability of paste.

Effect of Space Holder Content on Pore Size and Distribution in HA/β-TCP Composites Consolidated by SPS (SPS로 제조된 HA/β-TCP 복합재의 기공의 크기와 분포에 미치는 지지체 량의 영향)

  • Lee, Tack;Woo, Kee-Do;Kang, Dong-Soo;Lee, Hae-Cheol;Jang, Jun-Ho
    • Korean Journal of Materials Research
    • /
    • v.25 no.4
    • /
    • pp.165-170
    • /
    • 2015
  • Ceramics biomaterials are useful as implant materials in orthopedic surgery. In this study, porous HA(hydroxyapatite)/${\beta}$-TCP(tricalcium phosphate) composite biomaterials were successfully fabricated using HA/${\beta}$-TCP powders with 10-30 wt% $NH_4HCO_3$ as a space holder(SH) and $TiH_2$ as a foaming agent, and MgO powder as a binder. The HA/${\beta}$-TCP powders were consolidated by spark plasma sintering(SPS) process at $1000^{\circ}C$ under 20 MPa conditions. The effect of SH content on the pore size and distribution of the HA/${\beta}$-TCP composite was observed by scanning electron microscopy(SEM) and a microfocus X-ray computer tomography system(SMX-225CT). These microstructure observations revealed that the volume fraction of the pores increased with increasing SH content. The pore size of the HA/${\beta}$-TCP composites is about $400-500{\mu}m$. The relative density of the porous HA/${\beta}$-TCP composite increased with decreasing SH content. The porous HA/${\beta}$-TCP composite fabricated with 30%SH exhibited an elastic modulus similar to that of cortical bone; however, the compression strength of this composite is higher than that of cortical bone.

Effects of Macrophage on Biodegradation of β-tricalcium Phosphate Bone Graft Substitute (대식세포가 β-tricalcium Phosphate 뼈이식제의 생분해에 미치는 영향)

  • Kim, Young-Hee;Jyoti, Anirban;Byun, In-Sun;Oh, Ik-Hyun;Min, Young-Ki;Yang, Hun-Mo;Lee, Byong-Taek;Song, Ho-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.10
    • /
    • pp.618-624
    • /
    • 2008
  • Various calcium phosphate bioceramics are distinguished by their excellent biocompatibility and osteoconductivity. Especially, the exceptional biodegradability of $\beta$-TCP makes it a bone graft substitute of choice in many clinical applications. The activation of osteoclasts, differentiated from macrophage precursor cells, trigger a cell-mediated resorption mechanism that renders $\beta$-TCP biodegradable. Based on this evidence, we studied the biodegradation process of granular-type $\beta$-TCP bone graft substitute through in vitro and in vivo studies. Raw 264.7 cells treated with RANKL and M-CSF differentiated into osteoclasts with macrophage-like properties, as observed with TRAP stain. These osteoclasts were cultured with $\beta$-TCP nano powders synthesized by microwave-assisted process. We confirmed the phagocytosis of osteoclasts by observing $\beta$-TCP particles in their phagosomes via electron microscopy. No damage to the osteoclasts during phagocytosis was observed, nor did the $\beta$-TCP powders show any sign of cytotoxicity. We also observed the histological changes in subcutaneous tissues of rats implanted with granule-type $\beta$-TCP synthesized by fibrous monolithic process. The $\beta$-TCP bone graft substitute was well surrounded with fibrous tissue, and 4 months after implantation, 60% of its mass had been biodegraded. Also, histological findings via H&E stain showed a higher level of infiltration of lymphocytes as well as macrophages around the granule-type $\beta$-TCP. From the results, we have concluded that macrophages play an important role in the biodegradation process of $\beta$-TCP bone graft substitutes.

THE EFFECTS OF ${\beta}-TCP$/rhBMP-2 ON BONE FORMATION IN OSTEOBLAST-LIKE CELLS INDUCED FROM BONE MARROW-DERIVED MESENCHYMAL STEM CELLS (골수유래줄기세포에서 분화된 골유사세포에서 ${\beta}-TCP$와 rhBMP-2의 골형성 효과에 관한 연구)

  • Choi, Yong-Soo;Hwang, Kyung-Gyun;Lee, Jae-Seon;Park, Chang-Joo;Shim, Kwang-Sup
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.4
    • /
    • pp.419-427
    • /
    • 2008
  • The present study aimed to investigate the osteogenic potentials of differentiated osteoblast-like cells (DOCs) induced from bone marrow-derived mesenchymal stem cells (MSCs) on ${\beta}-tricalcium$ phosphate (${\beta}-TCP$) with recombinant human bone morphogenetic protein (rhBMP-2) in vitro. Osteoblast differentiation was induced in confluent cultures by adding 100 nM dexamethasone, 10 mM ${\beta}$-glycerophosphate, 50 mM L-ascorbic acid. The Alizarin red S staining and reverse transcriptase-polymerase chain reaction (RT-PCR) were perfomed to examine the mRNA expression of alkaline phosphatase (ALP), bone sialoprotein (BSP), osteocalcin (OCN), receptor activator for nuclear factor ${\kappa}B$ ligand (RANKL), runt-related transcription factor 2 (RUNX2), collagen-Ⅰ (COL-Ⅰ). There were no significant differences in the osteogenic potentials of DOCs induced from MSCs on ${\beta}-TCP(+/-)$. According to the incubation period, there were significant increasing of Alizadin red S staining in the induction 3 weeks. The mRNA expression of ALP, RUNX2, and RANKL were higher in DOCs/${\beta}-TCP(-)$ than DOCs/${\beta}-TCP(+)$. According to rhBMP-2 concentrations, the mRNA expression of BSP was significantly increased in DOCs/${\beta}-TCP(+)$ compared to that of DOCs/${\beta}-TCP(-)$ on rhBMP 10 ng/ml. Our study presented the ${\beta}-TCP$ will have the possibility that calcium phosphate directly affect the osteoblastic differentiation of the bone marrowderived MSCs.

Preparation of calcium phosphates by hydrothermal synthesis route (수열합성법에 의한 calcium phosphates 분말합성)

  • Moon, Sung Wook;Lee, Byeong Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.5
    • /
    • pp.203-207
    • /
    • 2019
  • Calcium phosphates such as hydroxyapatite (HAp), tricalcium phosphate (${\beta}$-TCP), and biphasic calcium phosphate (BCP, HAp/${\beta}$-TCP) have been prepared via hydrothermal treatment. The synthesis was conducted by reacting ($Ca(OH)_2$) aqueous solution with phosphoric acid ($H_3PO_4$) under different hydrothermal synthesis conditions (temperatures up to $150^{\circ}C$ and pH lower than 12). The effects of initial precursor Ca/P ratio (1.30, 1.50 and 1.67) and post heat treatment on the phase evolution behavior of the powders and sintered ceramics were investigated. The phases of resulting powders and sintered ceramics were controllable by adjusting the initial Ca/P ratio. A single HAp phase without any noticeable second phase was obtained for the initial Ca/P ratio of 1.67 in the overall heat treatment range. Pure ${\beta}$-TCP and biphasic calcium phosphate (HAp/${\beta}$-TCP) were synthesized from precursor solutions having Ca/P molar ratios of 1.30 and 1.50, respectively, after having been heat treated at $900^{\circ}C$ or higher. Dense ceramics with translucency were obtained at considerably lower sintering temperatures.

The BMPs expression and histomorphometric study of ${\beta}-TCP$ / rhBMP-2 Grafting on the rabbit cranial bone defects

  • Lim, Byung-Sup;Jeon, Jae-Yoon;Park, Chang-Joo;Im, Jae-Jung;Hwang, Kyung-Gyun;Shim, Kwang-Sup
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.1
    • /
    • pp.49-58
    • /
    • 2008
  • Objective: The Purpose of the study was to investigate the bone morphogenic protein expression of rhBMP-2(recombinant human bone morphogenic protein-2) as singnaling molecule and ${\beta}-TCP$(Tricalcium phosphate) as a bone substitute and carrier medium of rhBMP-2. Materials and Methods: 16 rabbits divided into 2 group of each 8 rabbit. Two standardized bone defect, round bilateral defect was made in the cranium of the 8 rabbit of first group, and was grafted with $150{\sim}500{\mu}m$ diameter ${\beta}-TCP$ 0.25g in one side, which was soaked with rhBMP-2, and autogenous bone was grafted on another side as a positive control. Second group of 8 rabbit, only ${\beta}-TCP$ was grafted with same size and same manner. After 2, 4, 8, and 12 weeks, specimen was taken for microscopic immunohiostochemical and histomorphometric analysis. Result: Grafting ${\beta}-TCP$ with rhBMP show the early formation of the bone regenerative factor (BMP-4) and more quantity of new bone formation than only use of ${\beta}-TCP$ (8,12 week), even show less new bone formation than autogenous bone. Conclusion : The experimental study result that ${\beta}-TCP$ graft combination with rhBMP-2 as a delivery system is an effective with osteoinductive capacity and biodegradable properties, so that provide clinical availibility of composite use in reconstruction of bony defect.

SINUS AUGMENTATION WITH ${\beta}$-TCP (${\beta}$-TCP를 이용한 상악동 점막거상술)

  • Hwang, Kyung-Gyun;Song, Seung-Il;Kim, Sang-Woo;Lee, Sung-Hoon;Kim, Young-Muen;Shim, Kwang-Sup
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.5
    • /
    • pp.428-433
    • /
    • 2004
  • Sinus floor augmentation has been proven an effective treatment procedure to increase bone volume in the posterior edentulous maxilla. Autogenous bone considered to be the best material for reconstructive bone surgery and has been successfully used as a graft material to augment posterior maxilla. However, the collection of autogenous bone required extra risks for morbidity and complaints. So, various bone graft materials included ${\beta}$-tricalcium phosphate(${\beta}$-TCP) has been introduced for replacing the autogenous bone. The objective of this clinical study was to determine the predictability of endosseous implant placed in a maxillary sinus with ${\beta}$-TCP grafting. We performed sinus elevation with ${\beta}$-TCP to install the implant in the 10 maxillary cases. The prosthetic procedure was performed 6-9 months after. The implant-prosthetics was checked about 1 year. We checked the implant and measured the maximum bite force to evaluate the function of the implant. There was not observed the specific problem and complication in dental implant and maxillary sinus in the grafted materials. The maximum bite force was 558N in case of natural tooth, 365N in implant without grafting, 318N in implant with ${\beta}$-TCP grafting. There was no significant difference between with and without sinus grafting on maximum bite force(p>0.05). As though the long term check-up is needed, the grafting of ${\beta}$-TCP as a osteoconductive materials can expand the volume and induce dense new bone formation in maxillary sinus. So, this short-term results support that ${\beta}$-TCP can be a suitable material for sinus augmentation.