DOI QR코드

DOI QR Code

Effects of different sizes of Hydroxyapatite/$\beta$-Tricalcium phosphate particles on vertical bone augmentation

수직골 증대술에서 $\beta$-Tricalciumphosphate/Hydroxyapatite 골 이식재 입자 크기의 영향

  • Huh, Jung-Bo (Advanced Prosthodontics, Graduate School of Clinical Dentistry, Korea University / Institute for Clinical Dental Research) ;
  • Jung, Dong-Hee (Advanced Prosthodontics, Graduate School of Clinical Dentistry, Korea University / Institute for Clinical Dental Research) ;
  • Kim, Ji-Sun (Advanced Prosthodontics, Graduate School of Clinical Dentistry, Korea University / Institute for Clinical Dental Research) ;
  • Shin, Sang-Wan (Advanced Prosthodontics, Graduate School of Clinical Dentistry, Korea University / Institute for Clinical Dental Research)
  • 허중보 (고려대학교 임상치의학대학원 고급보철과, 임상치의학연구소) ;
  • 정동희 (고려대학교 임상치의학대학원 고급보철과, 임상치의학연구소) ;
  • 김지선 (고려대학교 임상치의학대학원 고급보철과, 임상치의학연구소) ;
  • 신상완 (고려대학교 임상치의학대학원 고급보철과, 임상치의학연구소)
  • Received : 2010.07.22
  • Accepted : 2010.10.11
  • Published : 2010.10.29

Abstract

Purpose: This study was aimed to evaluate the effect of different sizes of $\beta$-TCP/ HA particles on vertical bone augmentation using titanium mesh in the cranium of rabbits. Materials and methods: Six white rabbits weighing 5kg were used. Four circular grooves of 6mm diameter were made by trephine, and five small holes were drilled in the inner surface of each circular gooves. Different sizes of grafts (small 0.3 - 0.5 mm, medium 0.5 - 1.0, large 1.0 - 2.0 mm) were placed respectively in the experimental groups. Titanium mesh (height 3 mm, width 6 mm) was placed. After 8weeks healing period, the rabbits were euthanized, and the specimens were prepared for histological findings. New bone formation and remaining graft area were measured to calculate the ratio of areas occupying the inner space of titanium mesh. Mann-Whitney U-test and Wilcoxon signed rank-test were used for statistical analysis ($\alpha$ = .05). Results: The experimental groups with $\beta$-TCP/HA graft showed a significantly higher new bone formation (P = .003). Comparing different sizes of $\beta$-TCP/HA, there was no statistical difference in terms of new bone formation. The vertical bone formation (i.e. new bone and graft area) was significantly greater in $\beta$-TCP/HA groups (P = .001). In comparison between different sizes of $\beta$-TCP/HA, medium size group had significantly greater area than large particle size group (P = .039). Conclusion: The use of $\beta$-TCP/HA with titanium mesh showed a higher vertical bone formation, particularly the medium sized $\beta$-TCP/HA particles (0.5 - 1.0 mm) produced better results in vertical bone augmentation.

연구 목적: $\beta$-Tricalcium phosphate/Hydroxyapatite ($\beta$-TCP/HA) 입자가 혼합된 합성 골 이식재의 particle size가 토끼의 두개골에서 타이타늄 메쉬를 이용해 시행된 골유도 재생술의 결과에 미치는 영향을 평가하고자 하였다. 연구 재료 및 방법: 여섯 마리의 수컷 뉴질랜드 산 백토끼 (5 kg)를 이용하여 실험 하였다. 토끼 두개골의 정 중앙을 절개하고 전층 판막을 형성하여 박리하였다. 두개골의 네 부위에 6 mm 직경의 트레핀 바 (XTP 5406; Dentium, Seoul, Korea)로 원형의 홈을 형성한 후 blood supply를 위해 원형의 홈안에 1 mm 직경의 라운드 바로 다섯 개의 작은 구멍을 형성하였다. 형성된 네 개의 홈 위에 표준화되어 맞춤 제작된 반구형 타이타늄 메쉬 (높이 3 mm, 직경 6 mm; Dentium, Seoul, Korea)를 위치시키고 세 개의 2 mm 길이의 티타늄 핀 (Dentium, Seoul, Korea)을 이용하여 고정하였다. 대조군은 이식재를 포함시키지 않았고 나머지 타이타늄 메쉬들은 실험군으로서 서로 다른 세 가지 크기의 이식재를 각각 담아서 고정하였다. 이식재 ($Osteon^{(R)}$, Dentium, Seoul, Korea)의 성분은 HA와 $\beta$-TCP ($\beta$-TCP/HA)가 혼합되어 있는 합성골 이식재이며 실험군으로 사용한 이식재의 크기는 각각 small (0.3 - 0.5 mm), medium (0.5 - 1.0 mm), large (1.0 - 2.0 mm) size 였다. 8주의 치유기간 후에 토끼를 희생시킨 후 조직 표본을 제작하고 CCD 카메라 (Polaroid DMC2 digital Microscope Camera (Polaroid Corporation, Cambridge, MA 02139, USA))가 부착되어 있는 광학 현미경 (Olympus BX, Tokyo, Japan)을 이용하여 두 가지 배율 (12.5배, 40배)로 조직학적 소견을 관찰하였다. 신생 골부위와 남은 골이식재 부위의 넓이를 측정하여 타이타늄 메쉬 내부 공간에서 차지하는 면적의 비율(%)을 구하였다. 그 수치들을 Mann-Whitney U-test와 Wilcoxon signed rank-test를 이용하여 통계 분석하였다 ($\alpha$ = .05). 결과: 대조군과 $\beta$-TCP/HA를 이식한 나머지 세 군의 신생골 형성을 비교하면 통계적으로 유의하게 $\beta$-TCP/HA를 이식한 군에서 신생골 형성이 더 많았다 (P = .003). 서로 다른 particle size 간 비교에서는 신생골 형성에 있어서 통계적으로 유의한 차이는 없었다. 하지만 형성된 수직골 총량 (신생골과 이식골의 면적의 합)을 각 그룹 간에 비교해 보면 대조군보다 $\beta$-TCP/HA를 이식한 군이 통계적으로 더 많은 비율을 나타내었고 (P = .001), 특히 $\beta$-TCP/HA 이식 군간 비교에서는 medium size 군이 large particle size 군보다 통계적으로 더 큰 면적을 나타내었다 (P = .039). 그러나 large particle size 군과 small particle size 군 사이 그리고 medium size 군과 small particle size 군 사이에는 통계적으로 유의한 차이를 보이지 않았다 (P> .05). 결론: 티타늄 메쉬를 이용한 수직골 증대술에서 $\beta$-TCP/HA 합성골을 사용하는 경우 수직골 형성에 기여하며 특히 medium size (0.5 - 1.0 mm)의 $\beta$-TCP/HA 이식재가 large size 이식재 보다 더 우수한 수직골 형성의 결과를 보였다.

Keywords

References

  1. Dahlin C. Scientific background of guided bone regeneration. In: Buser D, Dahlin C, Schenk RK, editors. Guided bone regeneration in implant dentistry. Hong Kong: Quintessence; 1994, p. 31-48.
  2. Dahlin C, Sennerby L, Lekholm U, Linde A, Nyman S. Generation of new bone around titanium implants using a membrane technique: an experimental study in rabbits. Int J Oral Maxillofac Implants 1989;4:19-25.
  3. Becker W, Becker BE, Handlesman M, Celletti R, Ochsenbein C, Hardwick R, Langer B. Bone formation at dehisced dental implant sites treated with implant augmentation material: a pilot study in dogs. Int J Periodontics Restorative Dent 1990;10:92-101.
  4. Schenk RK, Buser D, Hardwick WR, Dahlin C. Healing pattern of bone regeneration in membrane-protected defects: a histologic study in the canine mandible. Int J Oral Maxillofac Implants 1994;9:13-29.
  5. Kostopoulos L, Karring T. Guided bone regeneration in mandibular defects in rats using a bioresorbable polymer. Clin Oral Implants Res 1994;5:66-74. https://doi.org/10.1034/j.1600-0501.1994.050202.x
  6. Kostopoulos L, Karring T. Augmentation of the rat mandible using guided tissue regeneration. Clin Oral Implants Res 1994;5:75-82. https://doi.org/10.1034/j.1600-0501.1994.050203.x
  7. Kostopoulos L, Karring T, Uraguchi R. Formation of jawbone tuberosities by guided tissue regeneration. An experimental study in the rat. Clin Oral Implants Res 1994;5:245-53. https://doi.org/10.1034/j.1600-0501.1994.050408.x
  8. Lioubavina N, Kostopoulos L, Wenzel A, Karring T. Long-term stability of jaw bone tuberosities formed by" guided tissue regeneration". Clin Oral Implants Res 1999;10:477-86. https://doi.org/10.1034/j.1600-0501.1999.100606.x
  9. Nyman S, Lang NP, Buser D, Bragger U. Bone regeneration adjacent to titanium dental implants using guided tissue regeneration: a report of two cases. Int J Oral Maxillofac Implants 1990;5:9-14.
  10. Buser D, Dula K, Belser U, Hirt HP, Berthold H. Localized ridge augmentation using guided bone regeneration. 1. Surgical procedure in the maxilla. Int J Periodontics Restorative Dent 1993;13:29-45.
  11. Ha¨mmerle CH, Karring T. Guided bone regeneration at oral implant sites. Periodontol 2000 1998;17:151-75. https://doi.org/10.1111/j.1600-0757.1998.tb00132.x
  12. Linde A, Thore′n C, Dahlin C, Sandberg E. Creation of new bone by an osteopromotive membrane technique: an experimental study in rats. J Oral Maxillofac Surg 1993;51:892-7. https://doi.org/10.1016/S0278-2391(10)80111-9
  13. Schmid J, Ha¨mmerle CH, Stich H, Lang NP. Supraplant, a novel implant system based on the principle of guided bone generation. A preliminary study in the rabbit. Clin Oral Implants Res 1991;2:199-202. https://doi.org/10.1034/j.1600-0501.1991.020407.x
  14. Buser D, Bra¨gger U, Lang NP, Nyman S. Regeneration and enlargement of jaw bone using guided tissue regeneration. Clin Oral Implants Res 1990;1:22-32. https://doi.org/10.1034/j.1600-0501.1990.010104.x
  15. Schmid J, Ha¨mmerle CH, Flu¨ckiger L, Winkler JR, Olah AJ, Gogolewski S, Lang NP. Blood-filled spaces with and without filler materials in guided bone regeneration. A comparative experimental study in the rabbit using bioresorbable membranes. Clin Oral Implants Res 1997;8:75-81. https://doi.org/10.1034/j.1600-0501.1997.080201.x
  16. Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA. Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res 1996;329:300-9. https://doi.org/10.1097/00003086-199608000-00037
  17. Goulet JA, Senunas LE, DeSilva GL, Greenfield ML. Autogenous iliac crest bone graft. Complications and functional assessment. Clin Orthop Relat Res 1997;339:76-81. https://doi.org/10.1097/00003086-199706000-00011
  18. Wippermann BW, Schratt HE, Steeg S, Tscherne H. Complications of spongiosa harvesting of the ilial crest. A retrospective analysis of 1,191 cases. Chirurg 1997;68:1286-91. https://doi.org/10.1007/s001040050361
  19. Ha JW, Jung HJ. Preparation of dense polycrystalline hydroxyapatite ceramics for the application of tooth implants. J Korean Ceram Soc 1983;20:55-62.
  20. Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res 1981;157:259-78.
  21. Yukna RA. Osseous defect responses to hydroxylapatite grafting versus open flap debridement. J Clin Periodontol 1989;16:398-402. https://doi.org/10.1111/j.1600-051X.1989.tb01667.x
  22. Bowers GM, Vargo JW, Levy B, Emerson JR, Bergquist JJ. Histologic observations following the placement of tricalcium phosphate implants in human intrabony defects. J Periodontol 1986;57:286-7. https://doi.org/10.1902/jop.1986.57.5.286
  23. Saffar JL, Colombier ML, Detienville R. Bone formation in tricalcium phosphate-filled periodontal intrabony lesions. Histological observations in humans. J Periodontol 1990;61:209-16. https://doi.org/10.1902/jop.1990.61.4.209
  24. Zaner DJ, Yukna RA. Particle size of periodontal bone grafting materials. J Periodontol 1984;55:406-9. https://doi.org/10.1902/jop.1984.55.7.406
  25. Mellonig JT. Osseous grafts and periodontal regeneration. In: Periodontal regeneration-Current Status and Direction, Polosn AM. Berlin, Quintessence; 1994.
  26. Fucini SE, Quintero G, Gher ME, Black BS, Richardson AC. Small versus large particles of demineralized freeze-dried bone allografts in human intrabony periodontal defects. J Periodontol 1993;64:844-7. https://doi.org/10.1902/jop.1993.64.9.844
  27. Murai M, Sato S, Fukase Y, Yamada Y, Komiyama K, Ito K. Effects of different sizes of beta-tricalcium phosphate particles on bone augmentation within a titanium cap in rabbit calvarium. Dent Mater J 2006;25:87-96. https://doi.org/10.4012/dmj.25.87
  28. Fucini SE, Quintero G, Gher ME, Black BS, Richardson AC. Small versus large particles of demineralized freeze-dried bone allografts in human intrabony periodontal defects. J Periodontol 1993;64:844-7. https://doi.org/10.1902/jop.1993.64.9.844
  29. Kon K, Shiota M, Ozeki M, Yamashita Y, Kasugai S. Bone augmentation ability of autogenous bone graft particles with different sizes: a histological and micro-computed tomography study. Clin Oral Implants Res 2009;20:1240-6. https://doi.org/10.1111/j.1600-0501.2009.01798.x
  30. Xu H, Shimizu Y, Asai S, Ooya K. Experimental sinus grafting with the use of deproteinized bone particles of different sizes. Clin Oral Implants Res 2003;14:548-55. https://doi.org/10.1034/j.1600-0501.2003.00933.x
  31. Nasr HF, Aichelmann-Reidy ME, Yukna RA. Bone and bone substitutes. Periodontol 2000 1999;19:74-86. https://doi.org/10.1111/j.1600-0757.1999.tb00148.x
  32. Wada T, Hara K, Ozawa H. Ultrastructural and histochemical study of beta-tricalcium phosphate resorbing cells in periodontium of dogs. J Periodontal Res 1989;24:391-401. https://doi.org/10.1111/j.1600-0765.1989.tb00888.x

Cited by

  1. Comparative study of new bone formation capability of zirconia bone graft material in rabbit calvarial vol.10, pp.3, 2018, https://doi.org/10.4047/jap.2018.10.3.167