Deformation behavior of nickel-rich Ti-51.5at.%Ni single crystals was investigated over a wide range of temperatures(77 to 440K) and strain levels(up to 9%) in compression. These alloys combined superior strength with wide range of pseudoelasticity temperature interval(~200K). The slip deformation in [001] orientation did not occur due to the prevailing slip system, and consequently, exhibited pseudoelastic deformation at temperatures ranging from 77 to 283K and 273 to 440K for the solutionized and over-aged cases, respectively. The critical transformation stress levels were in the range of 800 to 1800MPa for the solutionized case, and 200 to 1000MPa for the over-aged case depending on the temperature and specimen orientation. These stress levels are considerably higher compared to these class of alloys having lower Ni contents. The maximum transformation strains, measured from incremental straining experiments in compression, were lower compared to the phenomenological theory with Type II twinning. A compound twinning model depending on the successive austenite(B2) to intermediate phase(R) to martensite(B19') transformation predicts lower transformation strains compared to the Type II twinning case.