태깅 시스템은 인터넷 사용자로 하여금 태그라고 불리는 메타데이터를 글, 사진, 동영상 등에 부여하도록 하여서 컨텐츠의 검색 및 브라우징을 편리하게 하는 시스템이다. 컨텐츠의 브라우징을 위해서 태그 클라우드라는 시각적 인터페이스가 널리 쓰이고 있다. 태그 클라우드는 가장 빈도수가 높은 태그들을 알파벳 순으로 보여주고 폰트의 크기로 그 태그들의 빈도수를 반영한다. 하지만 기존의 태그 선택 방법은 몇 가지 단점들이 알려져 있다. 그래서 이 논문은 참신한 컨텐츠들을 찾을 수 있도록 Freshness라는 태그 클라우드를 위한 새로운 태그 선택 방법을 정의하였다. Freshness는 태그 동시 발생 확률 분포(tag co-occurrence probability distribution)가 동적으로 변화하는 것을 Kullback-Leibler divergence로 평균한 값이다. Allblog, Eolin, Technorati 등 세 개의 웹사이트로부터 실제 태그 데이터를 수집하여 우리의 태그 클라우드를 생성하는 시스템, 'Fresh Tag Cloud'를 구축하였다. 이 태그 클라우드를 Allblog에서 수집한 데이터에서 전통적인 태그 클라우드와 비교했을 때 중복평균이 87.5% 감소하여서 성능이 더 향상된 것을 확인할 수 있다.