협력적 여과 시스템은 희박성과 단지 두 고객만의 선호도에 따른 상관 관계로 추천을 제공한다는 문제점과 군집내의 가장 유사한 두 사용자만의 상관 관계에 의하여 추천을 한다는 단점이 있다. 또한, 상품의 내용을 기반으로 하지 않고 선호도만을 기반으로 하므로 추천의 정확도가 사용자에 의해 평가한 자료에만 의존한다는 문제점도 있다. 이와 같이 평가된 자료를 추천에 이용할 경우, 모든 사용자가 모든 상품에 대해 성의 있게 평가할 수는 없으므로 추천의 정확도가 낮아지는 결과를 가져온다. 따라서 본 논문에서는 엔트로피을 사용하여 사용자가 상품에 대하여 평가한 자료를 기반으로 검증되지 않은 사용자를 제외시키고, 다음으로 사용자 프로파일을 생성한 후 사용자를 군집시키며, 마지막으로 그룹의 대표 선호도를 추출하는 방법을 제안한다. 기존의 사용자 군집을 이용한 방법은 군집내의 사용자만을 대상으로 유사한 사용자를 찾으므로 희박성은 해결할 수 있으나 그 외의 단점을 해결하지 못하였다. 제안한 방법에서는 상품에 대해 평가한 선호도 뿐만 아니라 상품에 대한 정보를 반영하기 위하여 연관 단어 마이닝의 방법에 의해 협력적 사용자의 프로파일을 생성하고, 이를 기반으로 벡터 공간 모델과 K-means 알고리즘에 의해 사용자를 군집시킨다. 군집된 사용자를 대상으로 상품의 선호도와 사용자의 엔트로피를 병합함으로써 최종적으로 그룹의 대표 선호도를 추출한다. 대표 선호도를 이용한 추천 시스템은 한 사용자의 부정확한 선호도를 기반으로 추천을 하는 경우에 나타나는 추천의 부정확도 문제를 해결하며, 군집내의 가장 유사한 두 사용자만의 상관 관계에 의하여 추천을 하는 단점을 보완하고, 또한 그룹 내에 가장 유사한 사용자를 찾는 데 소요되는 시간을 절약할 수 있다는 장점을 갖는다.