Kim, Kwang-Soo;Kim, Tae-Hyoung;Kwak, Soo-Yeong;Byun, Hye-Ran
1075
본 논문은 동영상에 등장하는 다수 사람의 동작을 검출하여 검출된 동작을 개별적으로 인식하는 방법을 제안한다. 동작이 수행되는 속도 또는 크기 변화에 강인한 인식 성능을 갖기 위해 시공간축 피라미드(Spatial-Temporal Pyramid)방식을 적용한다. 동작 표현 방식을 통계적 특성 기반의 모션 그래디언트 히스토그램(MGH:Motion Gradient Histogram)으로 선택하여 인식 과정에서 발생하는 복잡도를 최소화 하였다. 다수의 동작을 검출하기 위하여 이진 차영상을 축적한 모션 에너지 이미지(MEI: Motion Energy Image) 방법을 적용하여 효율적으로 개별적 동작 영역을 획득한다. 각 영역은 동작 표현 방법인 MGH로 나타내어지고, 크기 변화에 강인하도록 피라미드 방식을 적응하여 학습된 템플릿 MGH와 유사도를 상호 비교하여 최종 인식 결과를 얻는다. 인식 성능의 평가를 위해 10개의 동영상을 활용하여 단일 객체, 다수 객체, 속도 및 크기 변화, 기존 방식과의 비교, 기타 추가 실험 등을 실시하여 다양한 조건의 영상에서 양호한 인식 결과를 확인 할 수 있었다.