가우시안 가중치 거리지도를 이용한 PET-CT 뇌 영상정합

Co-registration of PET-CT Brain Images using a Gaussian Weighted Distance Map

  • 이호 (서울대학교 전기컴퓨터공학부) ;
  • 홍헬렌 (서울대학교 전기컴퓨터공학부) ;
  • 신영길 (서울대학교 전기컴퓨터공학부)
  • 발행 : 2005.07.01

초록

본 논문에서는 PET-CT 뇌 영상융합을 위해 가우시안 가중치 거리지도를 이용한 표면기반 영상정합을 제안한다. 제안방법은 중요 세 단계로 표면 특징점 추출, 가우시안 가중치 거리지도 생성, 가중치기반 유사도 평가로 구성된다. 첫째, PET 영상과 CT 영상에서 삼차원 역 영역성장법을 이용하여 머리영역을 분할하고 머리 영역과 같이 분할된 잡음 영역을 영역성장법기반 레이블링을 이용한 영역 크기 비교를 통해 제거한 후 선명화 처리 필터를 적용하여 머리 표면 특징점을 추출한다. 둘째, CT 영상에서 추출한 표면 특징점에 가우시안 가중치 거리지도를 생성하여 큰 변위에서도 최적의 위치로 견고하게 수렴하도록 한다. 셋째, 가중치기반 상호상관관계는 PET 영상에서 추출한 표면 특징점과 대응되는 CT 영상의 가우시안 가중치 거리지도를 이용하여 최적 위치를 탐색한다. 본 논문에서는 제안방법의 정확성과 견고성 검사를 위해 인공데이타를 이용하고, 수행시간과 육안평가를 위해 임상데이타를 이용한다. 정확성 검사는 임의로 변환된 인공데이타에 제안방법을 적용한 후 추출된 최적화 변환벡터와의 오차를 제곱근평균제곱오차를 이용하여 평가한다. 견고성 검사는 큰 변위와 잡음을 가지는 인공데이타에서 가중치기반 상호상관관계가 최적의 위치에서 최대를 이루는지를 평가한다 실험 결과 제안한 표면기반 영상정합이 기존 표면기반 영상정합보다 정확하고 견고하게 수렴됨을 알 수 있다.

In this paper, we propose a surface-based registration using a gaussian weighted distance map for PET-CT brain image fusion. Our method is composed of three main steps: the extraction of feature points, the generation of gaussian weighted distance map, and the measure of similarities based on weight. First, we segment head using the inverse region growing and remove noise segmented with head using region growing-based labeling in PET and CT images, respectively. And then, we extract the feature points of the head using sharpening filter. Second, a gaussian weighted distance map is generated from the feature points in CT images. Thus it leads feature points to robustly converge on the optimal location in a large geometrical displacement. Third, weight-based cross-correlation searches for the optimal location using a gaussian weighted distance map of CT images corresponding to the feature points extracted from PET images. In our experiment, we generate software phantom dataset for evaluating accuracy and robustness of our method, and use clinical dataset for computation time and visual inspection. The accuracy test is performed by evaluating root-mean-square-error using arbitrary transformed software phantom dataset. The robustness test is evaluated whether weight-based cross-correlation achieves maximum at optimal location in software phantom dataset with a large geometrical displacement and noise. Experimental results showed that our method gives more accuracy and robust convergence than the conventional surface-based registration.

키워드

참고문헌

  1. J.B.A.Maintz, M.A.Viergever, 'A survey of medical image registration,' Medical Image Analysis, Vol.2, Iss.1, pp. 1-36, Mar. 1998 https://doi.org/10.1016/S1361-8415(01)80026-8
  2. B.litova, J.Flusser, 'Image registration methods : a survey,' Image and Vision Computing, Vol.21 , pp. 977-1000, 2003 https://doi.org/10.1016/S0262-8856(03)00137-9
  3. A.P.Dhawan, L.K.Arata, Alejandro V.Levy, and Joseph Mantil, 'Iterative Principal Axes Registration Method for Analysis of MR-PET Brain Images,' IEEE Transactions on Biomedical Engineering, Vol.42, No.11, pp. 1079-1087, Nov. 1995 https://doi.org/10.1109/10.469374
  4. L.K.Arata, A.P.Dhawan, 'Iterative Principal Axes Registration : A New Algorithm for Retrospective Correlation of MR-PET Brain Images,' Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vo1.14, pp. 2776-2778, Nov. 1992
  5. 이호, 홍헬렌, 신영길, '지역적 가중치 거리맵을 이용한 3차원 영상정합', 정보과학회논문지 : 소프트웨어 및 응용, 제31권, 제7호, pp. 939-948, Jul. 2004
  6. H. Hong, J. Lee, K. W. Lee, Y. G. Shin, 'Automatic Lung Surface Registration using Selective Distance Measure in Temporal CT Scans,' A. Sanfeliu et al. (Eds,) LNCS 3287, pp. 517-524, 2004 Springer-Verlag Berlin Heiderlberg
  7. 이호, 김동성, 강흥식, '다중 모달 정합에 의한 Visible Human의 뼈 분할 방법', 정보과학회눈문지 : 소프트웨어 및 응용, 제30권, 제8호, pp. 719-726, Aug. 2003
  8. A.Collignon, D.Vandermeulen, P.Suetens, G.Marchal, '3D multi-modality medical image registration using feature space clustering,' Proceedings of the First International Conference on Computer Vision, Virtual Reality and Robotics in Medicine, Vo1.905, pp. 195-204, Apr. 1995
  9. J.B.A.Maintz, P.Avan den Elsen, and M.AViergerver, '3D multimodality medical image registration using morphological tools,' Image and Vision Computing, Vol.19, pp. 53-62, 2001 https://doi.org/10.1016/S0262-8856(00)00051-2
  10. Y.Hata, S.Kobashi, S.Hirano, and M.Ishikawa, 'Registration of Multi-Modality Medical Images by Soft Computing Approach,' ICONIP 6th International Conference on Neural Information Processing, Vo1.3, pp. 878-883, 1999 https://doi.org/10.1109/ICONIP.1999.844653
  11. L.Y.Hsu, M.H.Loew, 'Fully automatic 3D featurebased registration of multi-modality medical images,' Image and Vision Computing Vol.19, pp. 75-85, 2001 https://doi.org/10.1016/S0262-8856(00)00058-5
  12. J.Cai, J.C.H.Chu, D.Recine, M.Sharma, C.Nguyen, R.Rodebaugh, V.A.Saxena, A.Ali, 'CT and PET lung image registration and fusion in radiotherapy treatment planning using the chamfer-matching method,' International Journal Radiation Oncology Biology Physics, Vol.43, No.4, pp. 883-891, 1999 https://doi.org/10.1016/S0360-3016(98)00399-X
  13. F.Maes, ACollignon, G.Marchal, P.Suetens, 'Multimodality Image Registration by maximization of Mutual Information,' IEEE Transaction on Medical Imaging, Vol.16, No.2, pp. 187-198, Apr. 1997 https://doi.org/10.1109/42.563664
  14. J.P.W.Pluim, J.B.A.Maintz, M.A.Viergever, 'Mutual information based registration of medical images : a survey,' IEEE Transactions on medical imaging, Vol.22, No.8, pp. 986-1004, Aug. 2003 https://doi.org/10.1109/TMI.2003.815867
  15. J.P.W.Pluim, J.B.A.Maintz, M.A.Viergever, 'Image Registration by Maximization of Combined Mutual Information and Gradient Information,' IEEE Transaction on Medical Imaging, Vo1.19, No.8, pp. 809-814, Aug. 2000 https://doi.org/10.1109/42.876307
  16. F.Maes, D.Vandermeulen, P.Suetens, 'Comparative evaluation of multiresolution optimization strategies for multimodality image registration by maximization of mutual information,' Medical Image Analysis, Vo1.3, No.4, pp. 373-386, 1999 https://doi.org/10.1016/S1361-8415(01)80075-X
  17. G.Rizw, R.Arienti, L.Castiglioni, M.Cattaneo, P.Castellone, C.Landoni, G.Ceresoli, C.Messa, M.C.Gilardi, S.Cerutti, F.Fazio, 'Automatic integration of PET/CT images for clinical use in radiotheraphy,' Proceedings of the 25th Annual International Conference of the IEEE EMBS, pp. 17-21, Sep. 2003
  18. J.J,Vaquero, M.Desco, J.Pascau, A.Santos, I.Lee, M.V.Green, 'PET, CT, and MR Image Registration of the Rat Brain and Skull,' IEEE Transactions on Nuclear Science, Vol.48, No.4, pp. 1440-1445, Aug. 2001 https://doi.org/10.1109/23.958376
  19. E.A.Firle, S.Wesarg, C.Dold, 'Fast CT/PET registration based on partial volume matching,' International Congress Series Vol.l268, pp. 31-36, 2004 https://doi.org/10.1016/j.ics.2004.03.243
  20. H.Kitagaki, E.Mori, S.Yamaji, K.Ishii, S.Kobashi, YHata, 'Frontotemporal dementia and Alzheimer disease : evaluation of cortical atrophy with automated hemispheric surface display generated with MR images,' Radiology, Vol.208, No.2, pp. 431-439, Aug. 1998 https://doi.org/10.1148/radiology.208.2.9680572
  21. J.R.Parker, Algorithms for image processing and computer vision, 1st Ed., p.432, John Wiley & Sons, Inc., U.S.A., 1997
  22. I.Pitas, Digital image processing algorithms and applications, 1st Ed., p.419, John Wiley & Sons, Inc., New York, 2000
  23. R.G.Gonzalez, R.E.Woods, Digital Image Processing, 1st Ed., p.729, Addison Welsey, U.S.A., 1993
  24. J.Masumoto, Y.Sato, M.Hori, T.Murakami, T.Johkoh, H.Nakamura, S.Tamura, 'A similarity measure for nonrigid volume registration using Known joint distribution of targeted tissue: Application to dynamic CT data of the liver,' Medical Image Analysis, Vol.7, Iss.4, pp. 553-564, Dee. 2003 https://doi.org/10.1016/S1361-8415(03)00036-7