텍스트 생성(text generation)은 언어가 아닌 다양한 지식원으로부터 텍스트를 생성해 내는 언어 처리의 한 분야로, 여러 가지 복합적이고 단계적인 과정을 통해 이루어진다. 본 논문에서는 자연스러운 텍스트 생성을 위한 여러 과정 중, 한번 언급된 대상(entity)을 자연스럽게 지시(refer)하기 위한 지시어 생성(referring expression generation), 특히 한국어에 두드러진 영형(zero pronoun)에 의한 대용화(pronominalization) 과정에 초점을 맞춘다. 이를 위해, 구문 정보와 비용기반 중심화 이론(cost-based centering model)을 바탕으로, 한국어에 적합한 지시어 특히 영형의 생성에 영향을 미치는 다양한 자질(feature)들온 규명하고, 기계 학습을 통해 지시어 생성 모델을 구축하였다. 세 개의 장르 - 묘사문(설명문), 뉴스, 짧은 우화 - 에서 총 95개의 텍스트로부터 학습이 이루어 졌으며 이론 대상으로, 제안된 자질들이 지시어의 생성, 특히 영형의 생성에 효율적으로 적용될 수 있음을 보였다. 또한, 지시어 생성과 관련된 기존의 방법론들과 본 논문에서 제안한 모델을 비교하여 성능이 크게 향상되었음을 보이고, T-test를 통해 99.9%의 신뢰 구간에서 그 성능 향상이 통계적으로 의미가 있음을 확인하였다.