Kim, Mijoo;Shin, Young Sang;Lee, Tae Jin;Youm, Heung Youl
5
스마트폰 사용이 대중화됨에 따라 스마트폰 사용인구 증가와 함께 우리의 일상생활과 밀접한 관계를 가지며 영향력을 넓혀가고 있는 가운데, 악성앱을 이용해 개인정보 유출, 불법 과금 유발, 스팸 발송 등 스마트폰 사용자에 피해를 입히며 사회적인 문제를 유발하는 보안 위협의 출현 또한 지속적으로 증가하고 있다. 이러한 문제를 해결하기 위해 전 세계 보안업체, 연구소, 학계 등에서는 스마트폰 악성앱을 탐지하고 대응하기 위한 기술을 연구개발하고, 앱 마켓에서는 악성앱을 탐지하기 위한 분석 시스템을 도입하는 등 다양한 활동이 진행되고 있다. 하지만 악성앱 또한 기존의 탐지 및 대응 기술을 우회하는 등 생존율을 높이기 위한 방향으로 점차 지능화 정교화되는 양상을 보이고 있다. 최근 이러한 특징은 앱 마켓 등에서 도입하고 있는 대량의 앱에 대한 자동화된 런타임 분석을 수행하는 동적분석 시스템/서비스를 대상으로 많이 발생되고 있는데, 동적분석의 환경적, 시간적 제약 등을 이용하여 분석기술을 회피하는 기법을 주로 사용하고 있다. 이와 관련하여 본 논문에서는 기존의 동적분석 기술을 우회하는 악성앱 분석회피 행위 유형을 분류하고, 이와 관련된 연구 동향에 대한 정보를 제공하고자 한다.