본 연구는 OLS모형을 적용하여 주택보유기간에 영향을 미치는 결정요인을 추정한 후 SVM, Decision Tree, Random Forest, Gradient Boosting, XGBoost, LightGBM을 통해 각 모형별 예측력을 비교하였다. 예측력이 가장 높은 모델을 기반모델 삼아 앙상블 모형 중 하나인 Stacking모형을 적용하여 더욱 예측력이 높은 모형을 구축하여 주택시장의 주택거래량을 파악할 수 있다는 점에 선행 연구와의 차이가 있다. OLS분석 결과 매도이익, 주택가격, 가구원 수, 거주주택형태(단독주택, 아파트)이 주택보유기간에 영향을 미치는 것으로 나타났으며, RMSE를 기준삼아 각 머신러닝 모형과 예측력 비교한 결과 머신러닝 모델의 예측력이 더 높은 것으로 나타났다. 이후, 영향을 미치는 변수로 데이터를 재구축한 후 각 머신러닝을 적용하여 예측력을 비교하였으며, 분석 결과 Random Forest의 예측력이 가장 우수한 것으로 나타났다. 또한 예측력이 가장 높은 Random Forest, Decision Tree, Gradient Boosting, XGBoost모형을 개별모형으로 적용하고, Linear, Ridge, Lasso모형을 메타모델로 하여 Stacking 모형을 구축하였다. 분석 결과, Ridge모형일 때 RMSE값이 0.5181으로 가장 낮게 나타나 예측력이 가장 높은 모델을 구축하였다.