Browse > Article
http://dx.doi.org/10.22640/lxsiri.2020.50.1.107

Availability Assessment of Single Frequency Multi-GNSS Real Time Positioning with the RTCM-State Space Representation Parameters  

Lee, Yong-Chang (Department of Urban Engineering, Incheon National University)
Oh, Seong-Jong (Department of Urban Convergence Engineering, Incheon National University)
Publication Information
Journal of Cadastre & Land InformatiX / v.50, no.1, 2020 , pp. 107-123 More about this Journal
Abstract
With stabilization of the recent multi-GNSS infrastructure, and as multi-GNSS has been proven to be effective in improving the accuracy of the positioning performance in various industrial sectors. In this study, in view that SF(Single frequency) GNSS receivers are widely used due to the low costs, evaluate effectiveness of SF Real Time Point Positioning(SF-RT-PP) based on four multi-GNSS surveying methods with RTCM-SSR correction streams in static and kinematic modes, and also derive response challenges. Results of applying SSR correction streams, CNES presented good results compared to other SSR streams in 2D coordinate. Looking at the results of the SF-RT-PP surveying using SF signals from multi-GNSS, were able to identify the common cause of large deviations in the altitude components, as well as confirm the importance of signal bias correction according to combinations of different types of satellite signals and ionospheric delay compensation algorithm using undifferenced and uncombined observations. In addition, confirmed that the improvement of the infrastructure of Multi-GNSS allows SF-RT-SPP surveying with only one of the four GNSS satellites. In particular, in the case of code-based SF-RT-SPP measurements using SF signals from GPS satellites only, the difference in the application effect between broadcast ephemeris and SSR correction for satellite orbits/clocks was small, but in the case of ionospheric delay compensation, the use of SBAS correction information provided more than twice the accuracy compared to result of the Klobuchar model. With GPS and GLONASS, both the BDS and GALILEO constellations will be fully deployed in the end of 2020, and the greater benefits from the multi-GNSS integration can be expected. Specially, If RT-ionospheric correction services reflecting regional characteristics and SSR correction information reflecting atmospheric characteristics are carried out in real-time, expected that the utilization of SF-RT-PPP survey technology by multi-GNSS and various demands will be created in various industrial sectors.
Keywords
Multi-GNSS; RTCM-SSR; SF-RT-PP; Ionospheric Delay; SBAS Correction;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Mahmoud Abd Rabbou, Adel El-Shazly & Kamal Ahmed. 2017. Comparative analysis of multiconstellation GNSS single-frequency precise point positioning. Survey Review. 373-382.
2 Mohamed Elsobeiey SalimAl-Harbi. 2016. Performance of real-time Precise Point Positioning using IGS real-time service GPS Solutions volume 20:565-571.   DOI
3 Montenbruck, O. 2003. Kinematic GPS positioning of LEO satellites using ionosphere-free single frequency measurements. Aerosp. Sci. Technol. 7:396-405.   DOI
4 Montenbruck O, Steigenberger P, Prange L, Deng Z, Zhao Q, Perosanz F, Romero I, Noll C, Sturze A, Weber G, Schmid R, MacLeod K, Schaer S. 2017. The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)-Achievements, prospects and challenges. Adv. Space Res. 59(7):1671-1697.   DOI
5 Nava B, Coisson P, Radicella SM. 2008. A new version of the NeQuick ionosphere electron density model. J Atmos Terr Phys. 70(15):1856-1862.   DOI
6 Paziewski J, Sieradzki R, Baryla R. 2018. Multi-GNSS high-rate RTK, PPP and novel direct phase observation processing method: application to precise dynamic displacement detection. Meas Sci Technol. 29:35002.   DOI
7 Roma-Dollase D, Hernandez-Pajares M, Krankowski A, Kotulak K, Ghoddousi-Fard R. et al. 2018. Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle. J Geod. 92(6):691-706.   DOI
8 Yigit CO, Gurlek E. 2017. Experimental testing of high-rate GNSS precise point positioning (PPP) method for detecting dynamic vertical displacement response of engineering structures. Geomat Nat Hazards Risk. 8(2):893-904.   DOI
9 T. Takasu. 2013. RTKLIB ver. 2.4.2 Manual. Beidou Navigation Satellite System. 2020. [Internet]. [en.beidou.gov.cn]. Last accessed 20 April 2020.
10 Shi J, Yuan X, Cai Y, Wang G. 2017. GPS real-time precise point positioning for aerial triangulation. GPS Solut. 21(2):405-414.   DOI
11 European GNSS Service Centre. 2020. [Internet]. [gsc-europa.eu]. Last accessed 20 April 2020.
12 GPS: The Global Positioning System. 2020. [Internet]. [gps.gov]. Last accessed 20 April 2020.
13 Beidou Navigation Satellite System. 2020. [Internet]. [en.beidou.gov.cn]. Last accessed 20 April 2020.
14 Trimble Positioning Services. 2020. [Internet]. [positioningservices.trimble.com]. Last accessed 31 March 2020.
15 U-Blox. 2019. [Internet]. [www.U-Blox.com]. Last accessed 3 December 2019.
16 RTCM. 2020. [Internet]. [www.rtcm.org]. Last accessed 20 April 2020.
17 Shaocheng Zhang, Shikang Du, Wei Li and Guangxing Wang. 2019. Evaluation of the GPS Precise Orbit and Clock Corrections from MADOCA Real-Time Products. Sensors. 19:2580.   DOI
18 Hoque MM, Jakowski N. 2015. An alternative ionospheric correction model for global navigation satellite systems. J Geod. 89(4):391-406.   DOI
19 Ju Hong, Rui Tu, Rui Zhang, Lihong Fan, Pengfei Zhang, Junqiang Han. 2020. Contribution analysis of QZSS to single-frequency PPP of GPS/BDS/GLONASS/Galileo, Advances in Space Research.
20 Junbo Shi, Chenhao Ouyang, Wenjie Peng, Yongshuai Huang and Chaoqian Xu. 2017. A Simplified BDS Broadcast Ephemeris and State Space Representative (SSR) Matching Method for BDS-only Real-time Precise Point Positioning (PPP). Digital Object Identifier. 10:1109.
21 Liang Li, Chun Jia, Lin Zhao, Jianhua Cheng, Jianxu Liu and Jicheng Ding. 2016. Real-Time Single Frequency Precise Point Positioning Using SBAS Corrections. Sensors 16:1261.   DOI
22 Klobuchar JA. 1987. Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans Aerosp Electron Syst. 23(3):325-332.   DOI
23 Kouba J, Heroux P. 2001. Precise Point Positioning Using IGS Orbit and Clock Products. GPS Solut. 5 (2):12-28.   DOI
24 Krietemeyer A, Ten Veldhuis,M-C, Van der Marel H, Realini E, van de Giesen N. 2018. Potential of Cost-Efficient Single Frequency GNSS Receivers for Water Vapor Monitoring. Remote Sens. 10(9):1493.   DOI
25 Liang Wang, Zishen Li, Maorong Ge, Frank Neitzel, Xiaoming Wang & Hong Yuan. 2019. Investigation of the performance of real-time BDS-only precise point positioning using the IGS real-time service, GPS Solutions volume 23, Article number: 66.
26 Lin Pan, Xiaohong Zhang, Jingnan Liu, Xingxing Li and Xin Li. 2017. Performance Evaluation of Single-frequency Precise Point Positioning with GPS, GLONASS, BeiDou and Galileo. THE JOURNAL OF NAVIGATION, 1-18.
27 Hernandez-Pajares M, Roma-Dollase D, Garcia-Fernandez M et al. 2018. GPS Solut. 2018, 22:102.   DOI
28 Bahadur B, Nohutcu M. 2018. PPPH: a MATLABbased software for multi-GNSS precise point positioning analysis. GPS Solut. 22:113.   DOI
29 Kang Joon Oh, Lee Yong Chang. 2019. Construction of 3D Spatial Information of Vertical Structure by Combining UAS and Terrestrial LiDAR. Journal of Cadastre & Land InformatiX. 49(2):57-66.
30 Lee Yong Chang, Kang Joon Oh. 2019. The Precise Three Dimensional Phenomenon Modeling of the Cultural Heritage based on UAS Imagery. Journal of Cadastre & Land InformatiX. 49(1):85-101.   DOI
31 Berkay Bahadur, Metin Nohutcu. 2019. Multi-GNSS Contribution to Single-Frequency Precise Point Positioning, XXIX International Symposium on "Modern Technologies, Education and Professional Practice in Geodesy and Related Fields"
32 Cai, C, Liu, Z, Luo, X. Single-frequency. 2013. ionosphere-free precise point positioning using combined GPS and GLONASS observations. J. Navig. 66:417-434.   DOI
33 Cai C, Gao Y, Pan L, Zhu J. 2015. Precise point positioning with quad-constellations: GPS, BeiDou, GLONASS, and Galileo. Adv. Space Res. 56(1):133-143.   DOI
34 Chen J, Huang L, Liu L, Wu P, Qin X. 2017. Applicability analysis of VTEC derived from the sophisticated Klobuchar model in China. ISPRS Int J Geo-Inf. 6(3):75.   DOI
35 Choy SL. 2009 An investigation into the accuracy of single frequency precise point positioning. Ph.D. thesis. RMIT University, Australia.
36 Daqian Lyu, Fangling Zeng, Xiaofeng Ouyang, Haichuan Zhang. 2020. Real-time clock comparison and monitoring with multi-GNSS precise point positioning: GPS, GLONASS and Galileo. Advances in Space Research. 65:560-571.   DOI
37 Gerhard Wubbena, Martin Schmitz, Jannes Wubbena. 2017. SSR & RTCM-Current Status, 4th EUPOS Technical Meeting November.
38 Tomoji TAKASU, 2015, QZSS-1 Precise Orbit Determination by MADOCA, International Symposium on GNSS 2015 Kyoto.
39 Shuhui Li, Lihua Li, Shuqing Wang, Junhuan Peng, Yujian Xu & Yaohui Zhao. 2017. Comparative analysis of three ionospheric broadcast models for global navigation satellite systems. Acta Geophysica. 65:395-410.   DOI
40 Tegedor J, Ovstedal O, Vigen E. 2014. Precise orbit determination and point positioning using GPS, GLONASS, Galileo and BeiDou. J. Geod. Sci. 4(1):65-73.
41 Xingxing Li, Maorong Ge, Xiaolei Dai, Xiaodong Ren, Mathias Fritsche, Jens Wickert, Harald Schuh. 2015. Accuracy and reliability of multi- GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. Journal of Geodesy.
42 Yunck TP. 1993. Coping with the atmosphere and ionosphere in precise satellite and ground positioning, Washington DC. Am Geophys Union Geophys Monogr Ser. 73:1-16.
43 Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH. 1997. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res.- Solid Earth. 102 (B3):5005-5017.   DOI
44 Ministry of Science and ICT News release. 2018. Korea's new challenge to space (The 3rd Basic Space Development Promotion Plan of the 14th National Space Commission).
45 NAVCAST High Accuracy Correction Service. 2019. [Internet]. [spaceopal.com/navcast]. Last accessed 21 December 2019.
46 HEXAGON Veripos. 2019. [Internet]. [veripos.com]. Last accessed 18 April 2020.
47 IGS-Real Time Service. 2020. [Internet]. [www.igs.org/rts]. Last accessed 22 April 2020.
48 Madoca Real-Time Products. 2020. [Internet]. [ssl.tksc.jaxa.jp/madoca/public/public_index_en.html]. Last accessed 21 December 2019.
49 NAVCOM A John Deere Company. 2019. [Internet]. [www.navcomtech.com]. Last accessed 15 April 2020.
50 Open Data Portal. 2019. [Internet]. [gnssdata.or.kr]. Last accessed 16 December 2019.
51 RTK-explorer. 2020. [Internet]. [rtkexplorer.com]. Last accessed 18 April 2020.
52 The PPP Wizard Project. 2020. [Internet]. [www.ppp-wizard.net]. Last accessed 22 April 2020.