A control system for an automated line heating process is developed by use of object-oriented methodology. The main function of the control system is to provide real-time heating information to technicians or automated machines. The information includes heating location, torch speed, heating order, and others. The system development is achieved by following the five steps in the object-oriented procedure. First, requirements are specified and corresponding objects are determined. Then, the analysis, design, and implementation of the proposed system are sequentially carried out. The system consists of six subsystems, or modules. These are (1) the inference module with an artificial neural network algorithm, (2) the analysis module with the Finite Element Method and kinematics analysis, (3) the data access module to store and retrieve the forming information, (4) the communication module, (5) the display module, and (6) the measurement module. The system is useful, irrespective of the heating sources, i.e. flame/gas, laser, or high frequency induction heating. A newly developed automated line heating machine is connected to the proposed system. Experiments and discussions follow.