Bakker, Marijn;Boonstra, Hotze;Engelhard, Wim;Daman, Bart
1
Present-day rules and regulations for the design and construction of ships are almost without exemption of a prescriptive and deterministic nature. Often it is argued that this situation is far from ideal; it does no right to the advances, which have been made during the past decades in engineering tools in marine technology, both in methodology and in computational power. Within IMO this has been realized for some time and has resulted in proposals to use Formal Safety Assessment(FSA) as a tool to improve and to modernize the rule making process. The present paper makes use of elements of the FSA methodology, but instead of working towards generic regulations or requirements, a Risk Assessment Approach, not unlike a 'safety case'; valid for a certain ship or type of ship is worked out. Delft University of Technology investigated the application of safely assessment procedures in ship design, in co-operation with Anthony Veder Shipowners and safety experts from Safely Service Center BV. The ship considered is a semi-pressurized-fully refrigerated LPG carrier. On the basis of the assumption that a major accident occurs, various accident, scenarios were considered and assessed, which would impair the safety of the carrier. In a so-called Risk Matrix, in which accident frequencies versus the consequence of the scenarios are depicted, the calculated risks all appeared lo be in the ALARP('as low as reasonable practicable') region. A number of design alternatives were compared, both on safety merits and cost-effectiveness. The experience gained with this scenario-based approach will be used to establish a set of general requirements for safety assessment techniques in ship design. In the view that assessment results will be most probably presented in a quasi-quantified manner, the requirements are concerned with uniformity of both the safety assessment. These requirements make it possible that valid comparison between various assessment studies can be made. Safety assessment, founded on these requirements, provides a validated and helpful source of data during the coming years, and provides naval architects and engineers with tools experience and data for safety assessment procedures in ship design. However a lot of effort has to be spent in order to make the methods applicable in day-to-day practice.