• Title, Summary, Keyword: 기하 원론

Search Result 36, Processing Time 0.088 seconds

A Study on Teaching of the Elements of Geometry in Secondary School (중학교 기하 교재의 '원론' 교육적 고찰)

  • Woo Jeong-Ho;Kwon Seok-Il
    • Journal of Educational Research in Mathematics
    • /
    • v.16 no.1
    • /
    • pp.1-23
    • /
    • 2006
  • It is regarded as critical to analyse and re-appreciate Euclidean geometry for the sake of improving school geometry This study, a critical analysis of demonstrative plane geometry in current secondary school mathematics with an eye to the viewpoints of 'Elements of Geometry', is conducted with this purpose in mind. Firstly, the 'Elements' is analysed in terms of its educational purpose, concrete contents and approaching method, with a review of the history of its teaching. Secondly, the 'Elemens de Geometrie' by Clairaut and the 'histo-genetic approach' in teaching geometry, mainly the one proposed by Branford, are analysed. Thirdly, the basic assumption, contents and structure of the current textbooks taught in secondary schools are analysed according to the hypothetical construction, ordering and grouping of theorems, presentations of proofs, statements of definitions and exercises. The change of the development of contents over time is also reviewed, with a focus on the proportional relations of geometric figures. Lastly, tile complementary way of integrating the two 'Elements' is explored.

  • PDF

A study on the historico-genetic principle revealed in Clairaut's (Clairaut의 <기하학 원론>에 나타난 역사발생적 원리에 대한 고찰)

  • 장혜원
    • Journal of Educational Research in Mathematics
    • /
    • v.13 no.3
    • /
    • pp.351-364
    • /
    • 2003
  • by A.C. Clairaut is the first geometry textbook based on the historico-genetic principle against the logico-deduction method of Euclid's This paper aims to recognize Clairaut's historico-genetic principle by inquiring into this book and to search for its applications to school mathematics. For this purpose, we induce the following five characteristics that result from his principle and give some suggestions for school geometry in relation to these characteristics respectively : 1. The appearance of geometry is due to the necessity. 2. He approaches to the geometry through solving real-world problems.- the application of mathematics 3. He adopts natural methods for beginners.-the harmony of intuition and logic 4. He makes beginners to grasp the principles. 5. The activity principle is embodied. In addition, we analyze the two useful propositions that may prove these characteristics properly.

  • PDF

Analysis on the Principles for Teaching Algebra Revealed in Clairaut's (Clairaut의 <대수학 원론>에 나타난 대수 지도 원리에 대한 분석)

  • Chang, Hye-Won
    • Journal of Educational Research in Mathematics
    • /
    • v.17 no.3
    • /
    • pp.253-270
    • /
    • 2007
  • by A.C. Clairaut was written based on the historico-genetic principle such as his . In this paper, by analyzing his we can induce six principles that Clairaut adopted to teach algebra: necessity and curiosity as a motive of studying algebra, harmony of discovery and proof, complementarity of generalization and specialization, connection of knowledge to be learned with already known facts, semantic approaches to procedural knowledge of mathematics, reversible approach. These can be considered as strategies for teaching algebra accorded with beginner's mind. Some of them correspond with characteristics of , but the others are unique in the domain of algebra. And by comparing Clairaut's approaches with school algebra, we discuss about some mathematical subjects: setting equations in relation to problem situations, operations and signs of letters, rule of signs in multiplication, solving quadratic equations, and general relationship between roots and coefficients of equations.

  • PDF

A review on the change of content and method of geometry in secondary school with a focus on the proportional relations of geometric figures (초.중등 수학 교과서에서 기하 양 사이의 비례관계의 전개 방식에 대한 역사적 분석)

  • Kwon Seok-Il;Hong Jin-Kon
    • Journal for History of Mathematics
    • /
    • v.19 no.2
    • /
    • pp.101-114
    • /
    • 2006
  • The content and method of geometry taught in secondary school is rooted in 'Elements' by Euclid. On the other hand, however, there are differences between the content and structure of the current textbook and the 'Elements'. The gaps are resulted from attempts to develop the geometry education. Specially, the content and method for the proportional relations of geometric figures has been varied. In this study, we reviewed the changes of the proportional relations of geometric figures with pedagogical point of view. The conclusion that we came to is that the proportional relations in incommensurable case Is omitted in secondary school. Teacher's understanding about the proportional relations of geometric figures is needed for meaningful geometry education.

  • PDF

A Study on the Thought of a Point in Mathematics (수학에 점의 사유에 대한 고찰)

  • Youn, Ho-Chang
    • Proceedings of the Korea Contents Association Conference
    • /
    • /
    • pp.141-142
    • /
    • 2012
  • 점과 선은 도형의 기초이며 수학과 물리학에서 중요한 요소라고 할 수 있다. 도형의 발달은 고대 이집트에서 이루어졌으며 이러한 도형의 발달은 그리스에서 체계화 되었으며 대표적으로 유클리드의 '기하학 원론'에서 점과 선에 대한 정의와 공리 등에 인하여 기하학은 발전하였다. 이러한 점에 관한 정의는 시대에 따라 재해석되고 논쟁과 토론의 과정을 거쳐왔으며. 즉 '점이 부분이 없는 것'이라는 기하학 원론'의 정의는 점의 존재성에 대한 다양한 철학적 사유를 이끌었으며 19세기 수학 기초의 위기 속에서 다양한 수학적 접근법이 나타나게 되었다. 본 논문에서는 점의 기존의 정의와 다양한 접근 방법에 대해서 살펴보고자 한다.

  • PDF

On the Algebraic Concepts in Euclid's Elements (유클리드의 원론에 나타난 대수적 개념에 대하여)

  • 홍진곤;권석일
    • Journal for History of Mathematics
    • /
    • v.17 no.3
    • /
    • pp.23-32
    • /
    • 2004
  • In this paper, Ive investigated algebraic concepts which are contained in Euclid's Elements. In the Books II, V, and VII∼X of Elements, there are concepts of quadratic equation, ratio, irrational numbers, and so on. We also analyzed them for mathematical meaning with modem symbols and terms. From this, we can find the essence of the genesis of algebra, and the implications for students' mathematization through the experience of the situation where mathematics was made at first.

  • PDF

Revisiting Logic and Intuition in Teaching Geometry: Comparing Euclid's Elements and Clairaut's Elements (Euclid 원론과 Clairaut 원론의 비교를 통한 기하 교육에서 논리와 직관의 고찰)

  • Chang, Hyewon
    • Journal for History of Mathematics
    • /
    • v.34 no.1
    • /
    • pp.1-20
    • /
    • 2021
  • Logic and intuition are considered as the opposite extremes of teaching geometry, and any teaching method of geometry is to be placed between these extremes. The purpose of this study is to identify the characteristics of logical and intuitive approaches for teaching geometry and to derive didactical implications by taking Euclid's Elements and Clairaut's Elements respectively representing the extremes. To this end, comparing the composition and contents of each book, we analyze which propositions Clairaut chose from Euclid's Elements, how their approaches differ in definitions, proofs, and geometrical constructions, and what unique approaches Clairaut took. The results reveal that Clairaut mainly chose propositions from Euclid's books 1, 3, 6, 11, and 12 to provide the contexts that show why such ideas were needed, rather than the sudden appearance of abstract and formal propositions, and omitted or modified the process of justification according to learners' levels. These propose a variety of intuitive strategies in line with trends of teaching geometry towards emphasis on conceptual understanding and different levels of justification. Specifically, such as the general principle of similarity and the infinite geometric approach shown in Clairaut's Elements, we could confirm that intuition-based geometry does not necessarily aim for tasks with low cognitive demand, but must be taught in a way that learners can understand.

The Diorism in Proposition I-22 of 『Euclid Elements』 and the Existence of Mathematical Objects (『유클리드 원론』 I권 정리 22의 Diorism을 통해서 본 존재성)

  • Ryou, Miyeong;Choi, Younggi
    • Journal of Educational Research in Mathematics
    • /
    • v.25 no.3
    • /
    • pp.367-379
    • /
    • 2015
  • The existence of mathematical objects was considered through diorism which was used in ancient Greece as conditions for the existence of the solution of the problem. Proposition I-22 of Euclid Elements has diorism for the existence of triangle. By discussing the diorism in Elements, ancient Greek mathematician proved the existence of defined object by postulates or theorems. Therefore, the existence of mathematical object is verifiability in the axiom system. From this perspective, construction is the main method to guarantee the existence in the Elements. Furthermore, we suggest some implications about the existence of mathematical objects in school mathematics.

Development and Application of Learning Materials of the Construction Unit in 7-B Grade Based on Clairaut's $El{\`{e}}ments$ de $G{\`{e}}om{\`{e}}trie$ (Clairaut의 <기하학 원론>에 근거한 7-나 단계 작도단원의 자료 개발과 적용에 관한 연구)

  • Park, Myeong-Hee;Shin, Kyung-Hee
    • Journal for History of Mathematics
    • /
    • v.19 no.4
    • /
    • pp.117-132
    • /
    • 2006
  • For a meaningful learning of the Construction Unit in 7-B Grade, this study aims to develop teaming materials on the basis of Clairaut's $El{\`{e}}ments$ de $G{\`{e}}om{\`{e}}trie$, which is grounded on a natural generation derived from the history of mathematics and emphasizes students' inquiry activity and reflective thinking activity, and to analyze the characteristics of learning process shown in classes which use the application of teaming materials. Six students were sampled by gender and performance and an interpretive case study was conducted. Construction was specified so as to be consciously executed with emphasis on an analysis to enable one to discover construction techniques for oneself from a standpoint of problem solving, a justification to reveal the validity of construction, and a step of reflection to generalize the results of construction.

  • PDF

Study on the Teaching of Proofs based on Byrne's Elements of Euclid (Byrne의 'Euclid 원론'에 기초한 증명 지도에 대한 연구)

  • Chang, Hyewon
    • Journal of Educational Research in Mathematics
    • /
    • v.23 no.2
    • /
    • pp.173-192
    • /
    • 2013
  • It may be replacement proofs with understanding and explaining geometrical properties that was a remarkable change in school geometry of 2009 revised national curriculum for mathematics. That comes from the difficulties which students have experienced in learning proofs. This study focuses on one of those difficulties which are caused by the forms of proofs: using letters for designating some sides or angles in writing proofs and understanding some long sentences of proofs. To overcome it, this study aims to investigate the applicability of Byrne's method which uses coloured diagrams instead of letters. For this purpose, the proofs of three geometrical properties were taught to middle school students by Byrne's visual method using the original source, dynamic representations, and the teacher's manual drawing, respectively. Consequently, the applicability of Byrne's method was discussed based on its strengths and its weaknesses by analysing the results of students' worksheets and interviews and their teacher's interview. This analysis shows that Byrne's method may be helpful for students' understanding of given geometrical proofs rather than writing proofs.

  • PDF