DOI QR코드

DOI QR Code

온실 스크린의 장파복사 방사율 및 흡수율 결정

Determination of Thermal Radiation Emissivity and Absorptivity of Thermal Screens for Greenhouse

  • Rafiq, Adeel (Department of Agricultural Engineering, Kyungpook National University) ;
  • Na, Wook Ho (Institute of Agricultural Science and Technology, Kyungpook National University) ;
  • Rasheed, Adnan (Department of Agricultural Engineering, Kyungpook National University) ;
  • Kim, Hyeon Tae (Dept. of Bio-Industrial Machinery Eng., Gyeongsang National Univ. (Insti. of Agric. & Life Sci.)) ;
  • Lee, Hyun Woo (Department of Agricultural Engineering, Kyungpook National University)
  • 투고 : 2019.06.30
  • 심사 : 2019.08.22
  • 발행 : 2019.10.30

초록

온실에서 겨울철 야간에는 열손실을 줄이기 위한 목적으로, 여름철 주간에는 차광을 위한 목적으로 스크린을 사용하고 있다. 온실의 냉난방 에너지 절감효과에 큰 영향을 미치는 스크린의 장파복사 방사율과 흡수율은 온실에 설치할 적절한 스크린을 선택하는데 있어서 중요한 요소가 되며 이러한 특성값들을 정확하게 측정할 수 있는 방법이 필요하다. 외부 환경조건에서 스크린의 장파복사 특성의 측정과 관련된 연구가 일부 수행된 바 있지만 모든 종류의 스크린에 적용할 수 있는 방법은 아니고 공극이 있는 스크린 자재에만 적용이 가능한 방법이다. 본 연구에서는 순복사계 및 야간복사계를 사용하여 온실 스크린의 장파복사 흡수량과 방사량을 측정하고, 방사율, 흡수율 및 투과율을 결정하는 새로운 방법을 제시하였다. 특성값의 측정은 공극이 0인 4가지 종류의 스크린 자재에 대하여 수행하였다. 모든 자재가 장파복사 방사량이 흡수량보다 높게 나타났다. PE, LD-13, LD-15 and PH-2의 장파복사 방사율은 각각 $0.439{\pm}0.020$, $0.460{\pm}0.010$, $0.454{\pm}0.004$, and $0.499{\pm}0.006$ 범위로 나타났다.

Greenhouse farmers often use thermal screens to reduce greenhouse heating expenses during the winter, and for shade during hot, sunny days in the summer, as it is an inexpensive solution to temperature control relative to other available options. However, accurate measurements of their emitted and absorbed radiations are important for the selection of suitable screens that offer maximum performance. Material's ability to save energy is highly dependent on these properties. Limited studies have investigated the measurement of these properties under natural conditions, but they are only applicable to materials having partial porosities. In this work, we describe a new radiation balance method for determining emissive power and absorptive capacity, as well as reflectivity, transmissivity and emissivity of materials having complete and partial transparency by using pyrgeometer and net radiometer. In this study, four materials with zero porosity, were tested. The emissivity value of PE, LD-13, LD-15 and PH-20 was $0.439{\pm}0.020$, $0.460{\pm}0.010$, $0.454{\pm}0.004$, and $0.499{\pm}0.006$, respectively. All tested samples showed high emitted radiation as compared to absorbed radiation.

키워드

참고문헌

  1. Abdel-Ghany, A.M., and I. M. Al-Helal. 2011. Solar energy utilization by a greenhouse:general relations. Renew Energy. 36(1):189-196. https://doi.org/10.1016/j.renene.2010.06.020
  2. Abdel-Ghany, A. M., and I. M. Al-Helal. 2012. A method for determining the long-wave radiative properties of a plastic shading net under natural conditions. Sol Energy Mat Sol C. 99:268-276. https://doi.org/10.1016/j.solmat.2011.12.009
  3. Abdel-Ghany, A.M., I. M. Al-Helal, M. Shady, and A. Ibrahim. 2015b. Convective heat transfer coefficients between horizontal plastic shading nets and air. Energ. Buildings. 93:119-125.
  4. Abdel-Ghany, A.M., I. M. Al-Helal, and M. R. Shady. 2015a. On the emissivity and absorptivity of plastic shading nets under natural conditions. Adv Mech Eng. 7:1-9.
  5. Adaramola, M. S. 2012. Estimating global solar radiation using common meteorological data in akure, nigeria. Renew Energy. 47:38-44. https://doi.org/10.1016/j.renene.2012.04.005
  6. Blonquist Jr, J., B. Tanner, and B. Bugbee. 2009. Evaluation of measurement accuracy and comparison of two new and three traditional net radiometers. Agric. For. Meteorol. 149(10):1709-1721. https://doi.org/10.1016/j.agrformet.2009.05.015
  7. Cohen, S., and M. Fuchs. 1999. Measuring and predicting radiometric properties of reflective shade nets and thermal screens. J Agr Eng Res. 73(3):245-255. https://doi.org/10.1006/jaer.1999.0410
  8. Gentle, A., K. Dybdal, and G. Smith. 2013. Polymeric mesh for durable infra-red transparent convection shields:applications in cool roofs and sky cooling. Sol Energy Mat Sol C. 115:79-85. https://doi.org/10.1016/j.solmat.2013.03.001
  9. Ghosal, M., and G. Tiwari. 2006. Modeling and parametric studies for thermal performance of an earth to air heat exchanger integrated with a greenhouse. Energ Convers Manag. 47(13-14):1779-1798. https://doi.org/10.1016/j.enconman.2005.10.001
  10. Hernandez-Perez, I., G. Alvarez, J. Xaman, I. Zavala-Guillen, J. Arce, and E. Sima. 2014. Thermal performance of reflective materials applied to exterior building components-a review. Energ. Buildings. 80:81-105. https://doi.org/10.1016/j.enbuild.2014.05.008
  11. Joudi, K. A., and A. A. Farhan. 2014. Greenhouse heating by solar air heaters on the roof. Renew Energy. 72:406-414. https://doi.org/10.1016/j.renene.2014.07.025
  12. Kurklu, A., and S. Bilgin. 2004. Cooling of a polyethylene tunnel type greenhouse by means of a rock bed. Renew Energy. 29(13):2077-2086. https://doi.org/10.1016/j.renene.2004.03.005
  13. Marshall, R. 2016. How to build your own greenhouse: designs and plans to meet your growing needs. Storey Publishing. North Adams,USA.
  14. Ponce, P., A. Molina, P. Cepeda, E. Lugo, and B. MacCleery. 2014. Greenhouse design and control. CRC Press.Boca Raton,USA.
  15. Pucar, M. D. 2002. Enhancement of ground radiation in greenhouses by reflection of direct sunlight. Renew Energy. 26(4):561-586. https://doi.org/10.1016/S0960-1481(01)00155-0
  16. Rafiq, A., W. H. Na, A. Rasheed, and H. W. Lee. 2019. Measurement of long-wave radiative properties of energy-saving greenhouse screens. Pak J Agr Sci (Submitted in May).
  17. Rasheed, A., J. W. Lee, and H. W. Lee. 2018a. Development and optimization of a building energy simulation model to study the effect of greenhouse design parameters. Energies. 11(8):1-19.
  18. Rasheed, A., J. W. Lee, and H. W. Lee. 2018b. Evaluation of overall heat transfer coefficient of different greenhouse thermal screens using building energy simulation. Protected Hort. Plant Fac. 27(4):294-301. https://doi.org/10.12791/KSBEC.2018.27.4.294
  19. Sethi, V., K. Sumathy, C. Lee, and D. Pal. 2013. Thermal modeling aspects of solar greenhouse microclimate control: a review on heating technologies. Solar energy. 96:56-82. https://doi.org/10.1016/j.solener.2013.06.034
  20. Shukla, A., G. Tiwari, and M. Sodha. 2008. Experimental study of effect of an inner thermal curtain in evaporative cooling system of a cascade greenhouse. Solar energy. 82(1):61-72. https://doi.org/10.1016/j.solener.2007.04.003