DOI QR코드

DOI QR Code

Biological Characteristics of Protein Hydrolysates Derived from Yoensan Ogae Meat by Various Commercial Proteases

프로테아제 종류에 따른 이용한 연산 오계육 단백질 가수분해물의 아미노산 및 생리활성 특성

  • Ha, Yoo Jin (1Department of Food and Biotechnology, Joongbu University) ;
  • Kim, Joo Shin (Division of Food Science and Culbinary Arts, Shinhan University) ;
  • Yoo, Sun Kyun (1Department of Food and Biotechnology, Joongbu University)
  • 하유진 (중부대학교 식품생명과학과) ;
  • 김주신 (신한대학교 식품조리과학부 식품영양전공) ;
  • 유선균 (중부대학교 식품생명과학과)
  • Received : 2019.08.30
  • Accepted : 2019.09.26
  • Published : 2019.09.30

Abstract

Natural-derived protein-derived low molecular weight peptides have been known to have physiological activities such as antioxidant, hypertension relief, immunomodulation, pain relief and antimicrobial activity. In this study, the low-molecular peptides were produced using commercial proteases (alcalase, bromelain, flavourzyme, neutrase, papain, protamex), and the antioxidant activity (DPPH scavenging activity, superoxide radical scavenging activity, hydroxy radical scavenging activity, and metals chelation capacity), constituent amino acid and molecular weight of the peptide were analyzed. Enzyme reaction was performed by adding 50 g of chopped Ogae meat slurry and 2%(w/v) protein enzyme into the enzyme reactor for 2 h at a pH of 6 and a temperature of $60^{\circ}C$. The degree of hydrolysis(%) after the reaction ranged from $36.65{\pm}4.10%$ to $70.75{\pm}5.29%$. The highest degree of hydrolysis of protamex was 46.3%, and the highest value of papain hydrolysate was $70.75{\pm}5.29%$. On the other hand, alcalase hydrolysate showed the lowest value of $36.65{\pm}4.10%$. Bromelain-treated low molecular weight peptides showed the highest DPPH radical scavenging activity and the lowest scavenging activity of alcalase-treated peptides. Superoxide radical scavenging activity showed that bromelain treated low molecular peptide showed the highest radical scavenging activity of 50% or more. Hydroxyl radical scavenging activity ranged from about 16.73 to 69.16%, the highest among bromelain-treated low molecular peptides. $Fe^{2+}$ chelation abilities showed a distribution between about 17.85 to 47.84%. The chelation capacity of the hydrolysates was not significantly different without any difference to the enzymes used. The results of amino acid analysis showed differences between hydrolysates of alcalase, bromelain, flavourzyme, neutrase, papain, and protamex enzymes. The most amino acid was glutamic acid. The molecular weight distribution of the enzyme hydrolyzates was in the range of 300-2,000 Da, although the molecular weight distribution differed according to the treated enzymes.

천연물 유래 저분자 펩타이드들은 항산화, 고혈압 완화, 면역조절, 진통완화 및 항균작용 등 생리활성이 있는 것으로 알려져 왔다. 본 연구는 연산오계육 단백질을 상업용 프로티아제(alcalase, bromelain, flavourzyme, neutrase, papain, protamex)를 이용하여 저분자 펩타이드를 생산하고 항산화 활성(DPPH 소거능, 슈퍼옥사이드 라디칼 소거능, 하이드록시 라디칼 소거능 및 금속 킬레이션 능력), 펩타이드의 구성 아미노산 및 분자량을 분석하였다. 효소반응은 효소반응기에 다진 오계육 슬러리 50 g와 단백질 효소 2%(w/v)를 넣고 pH 6 와 온도 $60^{\circ}C$ 조건에서 2시간 반응을 하였다. 반응 후 가수분해도(%)의 범위는 $36.65{\pm}4.10%$에서 $70.75{\pm}5.29%$ 사이의 범위를 보여주었는데 protamex의 가수분해도는 46.3%로 가장 높았으며, papain hydrolysate가 $70.75{\pm}5.29%$로 가장 높은 값을 보여주었으며, 반면에 alcalase hydrolysate가 $36.65{\pm}4.10%$로 가장 낮은 값을 보여주었다. DPPH 라디칼 소거능은 bromelain 처리 저분자 펩타이드가 가장 높게 나타났고, alcalase 처리 펩타이드에서 소거능이 가장 낮게 나타났다. 슈퍼옥사이드 라디칼 소거능 역시 bromelain 처리 저분자 펩타이드가 50% 이상의 가장 높은 라디칼 소거능을 보여주었다. 하이드록시 라디칼 소거능은 약 16.73에서 69.16% 사이의 분포를 보여 주었는데 bromelain 처리 저분자 펩타이드에서 가장 높게 나타났다. $Fe^{2+}$ 킬레이션 능력은 약 17.85에서 47.84% 사이의 분포를 보여 주었다. hydrolysate들의 킬레이션 능력은 사용 효소들에 상관없이 큰 차이점이 없었다. 아미노산의 분석결과 alcalase, bromelain, flavourzyme, neutrase, papain, protamex 효소 가수분해 시켰을 때 차이점을 보여 주었고 가장 많은 아미노산은 glutamic acid이었다. 효소 hydrolysate들의 분자량의 분포는 처리 효소에 따라 분자량의 분포가 다르게 나타났지만 300-2,000 Da 범위에 있었다.

Keywords

References

  1. H. S. Yoo, K. H. Chung, K. J. Lee, D. H. Kim, J. H. "An. Effect of Gallus gallus var. domesticus (Yeonsan ogolgye) extracts on osteoblast differentiation and osteoclast formation", Microbiol. Biotechnol. Vol.43, pp.322-329, (2015).
  2. C. M. Cho, C. K. Park, M. Y. Lee, I. D. Lew, "Physicochemical characteristics of silky fowl (Gallus domesticus var. silkies)", Korean J. Food Sci. Ani. Vol.26, pp. 306-314, (2006).
  3. Y. Y. Sun, D. D. Pan, Y. X. Guo, J. J. Li, "Purification of chicken breast protein hydrolysate and analysis of its antioxidant activity", Food and Chemical Toxicology, Vol.50, pp. 3397-3404, (2012). https://doi.org/10.1016/j.fct.2012.07.047
  4. K. Elavarasan, B. A. Shamasundar, B. Faraha, H. Howell, "Angiotensin I-converting enzyme (ACE) inhibitory activity and structural properties of oven- and freeze-dried protein hydrolysate from fresh water fish (Cirrhinus mrigala)", Food Chemistry, Vol.206, pp. 210-216, (2016). https://doi.org/10.1016/j.foodchem.2016.03.047
  5. R. Z. Gu, W. Y. Liu, F. Lin, Z. T. Jin, L. Chen, W. X. Yi, J. Lu, M. Y. Cai, "Antioxidant and angiotensin I-converting enzyme inhibitory properties of oligopeptides derived from black-bone silky fowl (Gallus gallus domesticus Brisson) muscle", Food Research International, Vol.49, pp. 326-333, (2012). https://doi.org/10.1016/j.foodres.2012.07.009
  6. J. H. Baek, E. J. Jeong, S. Y. Jeon, Y. J. Cha, "Taste components of the hydrolysate of snow crab chionoecetes japonicus cooker effluent as precursors of crab flavorings". Kor J Fish Aquat Sci., Vol.45, pp. 232-237, (2012). https://doi.org/10.5657/KFAS.2012.0232
  7. Huang G, Ren Z, Jiang J. "Separation of iron-binding peptides from shrimp processing by-products hydrolysates". Food Bioprocess Technol, Vol.4, No.8 pp. 1527-1532, (2011). https://doi.org/10.1007/s11947-010-0416-3
  8. A. L. Carthy, Y. C. Callaghan, N. M. Brien, "Protein Hydrolysates from Agricultural Crops Bioactivity and Potential for Functional Food Development", Agriculture, Vol.3, pp. 112-130, (2013). https://doi.org/10.3390/agriculture3010112
  9. L. Qing, L. Yi, M. Peter, I. Brent, "Commercial proteases: Present and future", FEBS Letters, Vol.587, pp.1155-1163, (2013). https://doi.org/10.1016/j.febslet.2012.12.019
  10. M. S. Blois, "Antioxidant determinations by the use of a stable free radica", Nature, Vol.18, pp. 1000, (2004).
  11. X. B. Fan, C. J. Li, D. N. sha, "The establishment of o-phenanthroline chemiluminescence system for measuring OH radical", Basic Medical Sciences and Clinics. Vol.18, No.6 pp. 468-471. (1998).
  12. W. Yu, Y. Zhao, Z. Xue, H. Jin, D. Wang, "The antioxidant properties of lycopene concentrate extracted from tomato paste", J. American oil Chem. Soc., Vol.78, No.7 pp. 697-701. (2001). https://doi.org/10.1007/s11746-001-0328-6
  13. I. Gulcin, "Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid)", Toxicol., Vol.217 No.2 pp. 213-220, (2006). https://doi.org/10.1016/j.tox.2005.09.011
  14. A. A. V. Sara, R. S. F. Sandra, H. Haiko, "Enzymatic Hydrolysis of Blue Crab (Callinectes Sapidus) Waste Processing to Obtain Chitin, Protein, and Astaxanthin-Enriched Extract", International J. Environmental & Agriculture Res., Vol.3, pp. 81-92, (2017).
  15. I. Gulcin, D. Berashvili, A. Gepdiremen, "Antiradical and antioxidant activity of total anthocyanins from Perilla pankinensis decne", J. Ethmopharmacol., Vol.101, No1 pp. 287-293, (2005). https://doi.org/10.1016/j.jep.2005.05.006
  16. H. Ham, K. S. Woo, B. Lee, J. Y. Park, E. Y. Sim, B. J. Kim, "Antioxidant compounds and activities of methanolic extracts from oat cultivars". J Korean Soc Food Sci Nutr. Vol.44, pp.1660-1665, (2015). https://doi.org/10.3746/jkfn.2015.44.11.1660
  17. T. Y. Kim, T. W. Jeon, S. H. Yeo, S. B. Kim, J. S. Kim, J. S. Kwak, "Antimicrobial, antioxidant and SOD-like activity effect of Jubak extracts", Korean J Food Nutr, Vol.23, pp. 299-305, (2010).
  18. H. W. Kang, "Antioxidative activity of extracts from Cichorium endivia L.", J Korean Soc Food Sci Nutr, Vol.41, pp. 1487-1492, (2012). https://doi.org/10.3746/jkfn.2012.41.11.1487
  19. S. Sakanaka, Y. Tachibana, Y. Okada, "Preparation and antioxidant properties of extracts of Japanese persimmon leaf tea (kakinoha-cha)", Food Chemistry, Vol.89, pp.569-575. (2005). https://doi.org/10.1016/j.foodchem.2004.03.013
  20. R E. Aluko, E. Monu, "Functional and bioactive properties of quinoa seed protein hydrolysates", J Food Sci, Vol. 68, pp. 1254-1258, (2003). https://doi.org/10.1111/j.1365-2621.2003.tb09635.x
  21. M. Y. Yoo, S. K. Kim, J. Y. Yang, "Characterization of an antioxidant from sporophyll of Undaria pinnatifida", Korean J Microbiol Biotechnol, Vol. 32, pp. 307-311, (2004).
  22. A. T. Girgih, C. C. Udenigwe, R. E. Aluko, "In vitro antioxidant properties of hemp seed (Cannabis sativa L.) protein hydrolysate fractions", J American Oil Chem Soc, Vol.88, pp. 381-389, (2010). https://doi.org/10.1007/s11746-010-1686-7
  23. R. He, A. T. Girgih, S. A. Malomo, X. Ju, R. E. Aluko, "Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions", J Functional Foods, Vol.5, pp. 19-227, (2013).
  24. A. G. P. Samaranayaka, E. C. Y. L. Chan, "Food-derived peptidic antioxidant: A review of their production, assessment, and potential applications", J Functional Foods, Vol.3, pp. 229-254, (2011). https://doi.org/10.1016/j.jff.2011.05.006
  25. C. C. Udenigwe, R. E. Aluko, "Chemometric Analysis of the Amino Acid Requirements of Antioxidant Food Protein Hydrolysates", Int. J. Mol. Sci., Vol.12, No.5 pp. 3148-3161, (2011). https://doi.org/10.3390/ijms12053148
  26. J. Adler-Nissen, "Enzymatic hydrolysis of proteins for increased solubility", J Afric Food Chem., Vol.24, pp. 1090-1093, (1976). https://doi.org/10.1021/jf60208a021
  27. Z. Liu, K. L. Schey, "Optimization of a MALDI TOF-TOF Mass Spectrometer for Intact Protein Analysis", J. Am. Soc. Mass Spectrum, Vol.16, pp. 482-490, (2005). https://doi.org/10.1016/j.jasms.2004.12.018
  28. K. Hsu, G. Lu, C. Jao, "Antioxidative properties of peptides prepared from tuna cooking juice hydrolysates with Orientase (Bacillus subtilis)", Food Research International. Vol.42, pp. 647-665, (2009). https://doi.org/10.1016/j.foodres.2009.02.014
  29. D. M. Yeum, Y. S. Kim, "Antioxidative action of enzymatic hydrolysates of mackerel muscle protein", Korean J. Food & Nutrition, Vol.7, No.2 pp. 128-136, (1994).
  30. S. N. Jamdar, V. Rajalakshmi, A. Sharma, "Antioxidant and ACE inhibitory properties of poultry viscera protein hydrolysate and its peptide fractions", Journal of Food Biochemistry, Vol.36, pp. 494-501, (2012). https://doi.org/10.1111/j.1745-4514.2011.00562.x