• Title/Summary/Keyword: Yoensan Ogae

Search Result 2, Processing Time 0.018 seconds

Optimization of Peptides Production Derived from By-product Viscera of Yoensan Ogae Meat Process (연산 오계 부산물 내장육으로부터 펩타이드 생산 최적 공정 개발과 생산물의 특성 분석)

  • Ji, Joong Gu;Yoo, Sun Kyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.549-559
    • /
    • 2016
  • Korean Black body fowl (Gallus gallus domesticus; Ogae) designated as a natural monument (registration number 265) has been known as a superb traditional Korean medicine. In this study, The production of peptide from the Viscera Waste of Yeonsan Ogae was optimized using commercial protease (bromelain) by response surface methodology under high pressure process. The range of processes was pressure (30 to 100 MPa), reaction time (1 to 5 h), and substrate concentration (10 to 30%, w/v). After reaction, the degree of hydrolysis, distribution of amino acids, and molecular weight of peptides were investigated. As a results, the optimization conditions were pressure 90 MPa, reaction time 3 to 4 h, and the amount of viscera meat 20% (w/v), respectively. The molecular weight of protein hydrolysates was distributed 400 to 1,000 Da. Accordingly we presumed that most products were peptides. Of those peptides, nonpolar or hydrophobic, polar but uncharged, positively charged, and negatively charged amino acids were 42.03, 26.0, 13.3, and 18.6%, respectively. Because higher amount of hydrophobic amino acids, we expected that those products would be able to utilize as the functional food ingredients.

Biological Characteristics of Protein Hydrolysates Derived from Yoensan Ogae Meat by Various Commercial Proteases (프로테아제 종류에 따른 이용한 연산 오계육 단백질 가수분해물의 아미노산 및 생리활성 특성)

  • Ha, Yoo Jin;Kim, Joo Shin;Yoo, Sun Kyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.1018-1027
    • /
    • 2019
  • Natural-derived protein-derived low molecular weight peptides have been known to have physiological activities such as antioxidant, hypertension relief, immunomodulation, pain relief and antimicrobial activity. In this study, the low-molecular peptides were produced using commercial proteases (alcalase, bromelain, flavourzyme, neutrase, papain, protamex), and the antioxidant activity (DPPH scavenging activity, superoxide radical scavenging activity, hydroxy radical scavenging activity, and metals chelation capacity), constituent amino acid and molecular weight of the peptide were analyzed. Enzyme reaction was performed by adding 50 g of chopped Ogae meat slurry and 2%(w/v) protein enzyme into the enzyme reactor for 2 h at a pH of 6 and a temperature of $60^{\circ}C$. The degree of hydrolysis(%) after the reaction ranged from $36.65{\pm}4.10%$ to $70.75{\pm}5.29%$. The highest degree of hydrolysis of protamex was 46.3%, and the highest value of papain hydrolysate was $70.75{\pm}5.29%$. On the other hand, alcalase hydrolysate showed the lowest value of $36.65{\pm}4.10%$. Bromelain-treated low molecular weight peptides showed the highest DPPH radical scavenging activity and the lowest scavenging activity of alcalase-treated peptides. Superoxide radical scavenging activity showed that bromelain treated low molecular peptide showed the highest radical scavenging activity of 50% or more. Hydroxyl radical scavenging activity ranged from about 16.73 to 69.16%, the highest among bromelain-treated low molecular peptides. $Fe^{2+}$ chelation abilities showed a distribution between about 17.85 to 47.84%. The chelation capacity of the hydrolysates was not significantly different without any difference to the enzymes used. The results of amino acid analysis showed differences between hydrolysates of alcalase, bromelain, flavourzyme, neutrase, papain, and protamex enzymes. The most amino acid was glutamic acid. The molecular weight distribution of the enzyme hydrolyzates was in the range of 300-2,000 Da, although the molecular weight distribution differed according to the treated enzymes.