DOI QR코드

DOI QR Code

전구체 공정부산물 LNO(Li2NiO2)계 양극활물질로부터 탄산리튬 및 니켈 회수연구

Recoverty of Lithium Carbonate and Nickel from Cathode Active Material LNO(Li2NiO2) of Precursor Process Byproducts

  • 투고 : 2019.06.03
  • 심사 : 2019.08.08
  • 발행 : 2019.08.30

초록

본 연구는 폐 리튬이온전지의 양극활물질인 LNO($Li_2NiO_2$) 공정부산물로부터 $CO_2$ 열반응 공정을 통하여 Li 분말을 회수하였다. Li 분말을 회수하는 공정은 $CO_2$ 주입량이 300 cc/min인 분위기에서 $600^{\circ}C$, 1 min 유지하여 $Li_2NiO_2$ 상을 $Li_2CO_3$상과 NiO상으로 상분리 시켰다. 이 후 회수한 시료:증류수 = 1:50 무게비로 수 침출 후 감압 여과를 통해 용액에서 $Li_2CO_3$, 여과지에서 NiO 분말을 회수하였다. Ni 순도를 높이기 위해 $H_2$ 분위기에서 3시간 유지하여 NiO에서 Ni로 환원하였다. 위와 같은 공정을 통해 회수한 탄산리튬 용액의 Li의 농도 2290 ppm, Li의 회수율은 92.74%를 달성하였고 Ni은 최종적으로 순도는 90.1%, 회수율 92.6%의 분말을 제조하였다.

In this study, Li powder was recovered from the by-product of LNO ($Li_2NiO_2$) process, which is the positive electrode active material of waste lithium ion battery, through the $CO_2$ thermal reaction process. In the process of recovering Li powder, the $CO_2$ injection amount is 300 cc/min. The $Li_2NiO_2$ award was phase-separated into the $Li_2CO_3$ phase and the NiO phase by holding at $600^{\circ}C$ for 1 min. After this, the collected sample:distilled water = 1:50 weight ratio, and after leaching, the solution was subjected to vacuum filtration to recover $Li_2CO_3$ from the solution, and the NiO powder was recovered. In order to increase the purity of Ni, it was maintained in $H_2$ atmosphere for 3 hours to reduce NiO to Ni. Through the above-mentioned steps, the purity of Li was 2290 ppm and the recovery was 92.74% from the solution, and Ni was finally produced 90.1% purity, 92.6% recovery.

키워드

참고문헌

  1. N. Ding, X. W. Ge, and C. H. Chen, 2005 : A new gel route to synthesize $LiCoO_2$ for lithium - ion batteries, Mater. Res. Bull, 40, pp.1451. https://doi.org/10.1016/j.materresbull.2005.04.022
  2. M. K. Jeong, C. S. Hwang, and C. S. Choi, 2006 : Characterization of $LiCoO_2$ Synthesized via Structural and Compositional Variations of Precursors Prepared by Precipitation, Clean Technology, 12, pp.101.
  3. J. Khanderi and J. J. Schneider, 2010 : A single source Co/Li/O organometallic precursor for nano-crystalline $LiCoO_2$. Synthesis, formation pathway and its electrochemical performance, Eur. J. Inorg. Chem., 29, pp.4591.
  4. J. H. Moon, J. E. Ahn, H. J. Kim, S. H. Sohn, H. W. Lee, and H. S. Kim, 2012 : Recovery of Cobalt from Waste Cathode Active Material Using Organic Acid, Applied Chemistry, 16, pp.73.
  5. C. K. Lee, D. H. Yang, and C. Y. Suh, 2002 : Preparation of $LiCoO_2$ from Spent Lithium Ion Batteries as a Cathodic Active Material, J. KSMER, 39, pp.157.
  6. S. H. Park, H. S. Ku, K. J. Lee, J. H. Song, S. K. Kim, J. S. Sohn, and K. J. Kown, 2015 : The Efferct of NH3 Concentration during Co-precipitation of Precursors from Leachate of Lithium-ion Battery Positive Electrode Active Materials, J. of Korean Inst. of Resources Recycling, 24, pp.9-16. https://doi.org/10.7844/kirr.2015.24.6.9
  7. M. Contestabile, S. Panero, and B. Scrosati, 2001 : Alaboratory-scale lithium-ion battery recycling process, J. Power Sources, 92, pp.65-69. https://doi.org/10.1016/S0378-7753(00)00523-1
  8. S. H. Son, J. H. Kim, H. J. Kim, S. J. Kim, and M. S. Lee, 2014 : Leaching of Valuable Metals from NCM Cathode Active Materials in Spent Lithium-Ion Battery by Malic acid, J. of Korean Inst. of Resources Recycling. 23, pp.21-29.
  9. INONOPOLIS Foundation "Lithium-Battery Market" Global Market Trends of Special Zone Technology report, 2018.
  10. P. Zhang, T. Yokoyama, O. Itabashi, T. M. Suzuki, and K. Inoue, 1998 : Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries, Hydrometallurgy, 47, pp.259-271. https://doi.org/10.1016/S0304-386X(97)00050-9
  11. M. Joulie, R. Lacournet, and E. Billy, 2014 : Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries, J. Power Sources, 247, pp.551-555. https://doi.org/10.1016/j.jpowsour.2013.08.128
  12. J. Kang, G. Senanayake, J. Sohn, and S. M. Shin, 2010 : Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272. Hydrometallurgy, 100, pp.168-171. https://doi.org/10.1016/j.hydromet.2009.10.010
  13. C. K. Lee and K. I. Rhee, 2002 : Preparation of $LiCoO_2$ from spent lithium-ion batteries, J. Power Sources, 109, pp.17-21. https://doi.org/10.1016/S0378-7753(02)00037-X
  14. L. Li, J. Ge, F. Wu, R. Chen, S. Chen, and B. Wu, 2010 : Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant, J. Hazard Mater., 176, pp.288-293. https://doi.org/10.1016/j.jhazmat.2009.11.026
  15. X. Chen and T. Zhou, 2014 : Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media, Waste Manag. Res, 32, pp.1083-1093. https://doi.org/10.1177/0734242X14557380
  16. L. Sun and K. Qiu, 2012 : Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries, Waste Manag, 32, pp.1575-1582. https://doi.org/10.1016/j.wasman.2012.03.027
  17. X. Zeng, J. Li, and B. Shen, 2015 : Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid, J. Hazard Mater, 295, pp.112-118. https://doi.org/10.1016/j.jhazmat.2015.02.064