• 제목/요약/키워드: $CO_2$ heat response

검색결과 64건 처리시간 0.027초

Operating Characteristics of Internal Heat Exchanger for $CO_2$ Geothermal Heat Pump in the Heating Mode (난방모드 시 $CO_2$ 지열히트펌프의 내부열교환기에 대한 운전특성)

  • Kim, Jae-Duck;Lee, Sang-Jae;Kim, Seon-Chang;Kim, Young-Lyoul
    • Proceedings of the SAREK Conference
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1226-1231
    • /
    • 2009
  • This paper presents operating characteristics of internal heat exchanger(IHX) for $CO_2$ geothermal heat pump in the heating mode. Mass flow rate of $CO_2$, inlet temperatures of $CO_2$ at high and low pressure side were selected as main effect factors by using fractional factorial DOE(Design of Experiments). And RSM(Response Surface Method) was used in optimization phase. The results show that heat transfer rate of IHX increases when either inlet temperature of low pressure side decreases or inlet temperature of high pressure side increases. Effectiveness of IHX increases with increasing of inlet temperature of either high pressure side or low pressure side. Finally, performance contour map was provided over the operation ranges of the main design factors.

  • PDF

The effect of coenzyme Q10 on endothelial function in a young population

  • Petrofsky, Jerrold;Laymon, M.;Lee, H.;Hernandez, E.;Dequine, D.;Thorsen, L.;Lovell, R.;Andrade, J.
    • Physical Therapy Rehabilitation Science
    • /
    • 제1권1호
    • /
    • pp.6-12
    • /
    • 2012
  • Objective: Coenzyme (CoQ10) is an enzymatic co factor used in normal cellular metabolism. Recent evidence shows that in people with heart disease it can reverse endothelial cell damage in the blood vessels. It is also a potent antioxidant. Design: One group pretest-posttest design. Methods: In the present study, endothelial function was evaluated using the response to occlusion and heat before and 2 weeks after administration of CoQ10, 300 mg/day. Thirty Eight subjects, who are physical therapy students, participated in a series of experiments to see if taking 300 mg of CoQ10 daily for 2 weeks would impact resting blood flow in the forearm skin and the blood flow response to 4 minutes of vascular occlusion and the response to local heat ($42^{\circ}C$) for 6 minutes. Results: The results showed that, for this population, there was no difference in the response to heat. However, the response to occlusion was improved after administration of CoQ10. Conclusions: It would appear that in a young population CoQ10 has no effect on the nitric oxide vasodilator pathway in skin but does influence other vasodilator pathways.

  • PDF

Control of Advanced Reactor-coupled Heat Exchanger System: Incorporation of Reactor Dynamics in System Response to Load Disturbances

  • Skavdahl, Isaac;Utgikar, Vivek;Christensen, Richard;Chen, Minghui;Sun, Xiaodong;Sabharwall, Piyush
    • Nuclear Engineering and Technology
    • /
    • 제48권6호
    • /
    • pp.1349-1359
    • /
    • 2016
  • Alternative control schemes for an Advanced High Temperature Reactor system consisting of a reactor, an intermediate heat exchanger, and a secondary heat exchanger (SHX) are presented in this paper. One scheme is designed to control the cold outlet temperature of the SHX ($T_{co}$) and the hot outlet temperature of the intermediate heat exchanger ($T_{ho2}$) by manipulating the hot-side flow rates of the heat exchangers ($F_h/F_{h2}$) responding to the flow rate and temperature disturbances. The flow rate disturbances typically require a larger manipulation of the flow rates than temperature disturbances. An alternate strategy examines the control of the cold outlet temperature of the SHX ($T_{co}$) only, since this temperature provides the driving force for energy production in the power conversion unit or the process application. The control can be achieved by three options: (1) flow rate manipulation; (2) reactor power manipulation; or (3) a combination of the two. The first option has a quicker response but requires a large flow rate change. The second option is the slowest but does not involve any change in the flow rates of streams. The third option appears preferable as it has an intermediate response time and requires only a minimal flow rate change.

Evaluation of Thermal Conductivity for Grout/Soil Formation Using Thermal Response Test and Parameter Estimation Models (열응답 시험과 변수 평가 모델을 이용한 그라우트/토양 혼합층의 열전도도 산정)

  • Sohn Byong Hu;Shin Hyun Jun;An Hyung Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제17권2호
    • /
    • pp.173-182
    • /
    • 2005
  • The Performance of U-tube ground heat exchanger for geothermal heat Pump systems depends on the thermal properties of the soil, as well as grout or backfill materials in the borehole. In-situ tests provide a means of estimating some of these properties. In this study, in-situ thermal response tests were completed on two vertical boreholes, 130 m deep with 62 mm diameter high density polyethylene U-tubes. The tests were conducted by adding a monitored amount of heat to water over a $17\~18$ hour period for each vertical boreholes. By monitoring the water temperatures entering and exiting the loop and heat load, overall thermal conductivity values of grout/soil formation were determined. Two parameter estimation models for evaluation of thermal response test data were compared when applied on the same temperature response data. One model is based on line-source theory and the other is a numerical one-dimensional finite difference model. The average thermal conductivity deviation between measured data and these models is of the magnitude $1\%$ to $5\%$.

Korean ginseng extract ameliorates abnormal immune response through the regulation of inflammatory constituents in Sprague Dawley rat subjected to environmental heat stress

  • Song, Ji-Hyeon;Kim, Kui-Jin;Choi, Seo-Yun;Koh, Eun-Jeong;Park, JongDae;Lee, Boo-Yong
    • Journal of Ginseng Research
    • /
    • 제43권2호
    • /
    • pp.252-260
    • /
    • 2019
  • Background: Increases in the average global temperature cause heat stress-induced disorders by disrupting homeostasis. Excessive heat stress triggers an imbalance in the immune system; thus protection against heat stress is important to maintain immune homeostasis. Korean ginseng (Panax ginseng Meyer) has been used as a herbal medicine and displays beneficial biological properties. Methods: We investigated the protective effects of Korean ginseng extracts (KGEs) against heat stress in a rat model. Following acclimatization for 1 week, rats were housed at room temperature for 2 weeks and then exposed to heat stress ($40^{\circ}C$/2 h/day) for 4 weeks. Rats were treated with three KGEs from the beginning of the second week to the end of the experiment. Results: Heat stress dramatically increased secretion of inflammatory factors, and this was significantly reduced in the KGE-treated groups. Levels of inflammatory factors such as heat shock protein 70, interleukin 6, inducible nitric oxide synthase, and tumor necrosis factor-alpha were increased in the spleen and muscle upon heat stress. KGEs inhibited these increases by down-regulating heat shock protein 70 and the associated nuclear $factor-{\kappa}B$ and mitogen-activated protein kinase signaling pathways. Consequently, KGEs suppressed activation of T-cells and B-cells. Conclusion: KGEs suppress the immune response upon heat stress and decrease the production of inflammatory cytokines in muscle and spleen. We suggest that KGEs protect against heat stress by inhibiting inflammation and maintaining immune homeostasis.

Gas sensing characteristics of Co3O4 thick films with metal oxides (금속산화물을 첨가한 Co3O4 후막의 가스 감지특성)

  • Jo, Chang-Yong;Park, Ki-Cheol;Kim, Jeong-Gyoo
    • Journal of Sensor Science and Technology
    • /
    • 제18권1호
    • /
    • pp.54-62
    • /
    • 2009
  • ${Co_3}{O_4}$ and ${Co_3}{O_4}$-based thick films with additives such as ${Co_3}{O_4}-{Fe_2}{O_3}$(5 wt.%), ${Co_3}{O_4}-{SnO_2}$ (5 wt.%), ${Co_3}{O_4}-{WO_3}$(5 wt.%) and ${Co_3}{O_4}$-ZnO(5 wt.%) were fabricated by screen printing method on alumina substrates. Their structural properties were examined by XRD and SEM. The sensitivities to iso-${C_4}H_{10}$, $CH_4$, CO, $NH_3$ and NO gases were investigated with the thick films heat treated at $400^{\circ}C$, $500^{\circ}C$ and $600^{\circ}C$. From the gas sensing properties of the films, the films showed p-type semiconductor behaviors. ${Co_3}{O_4}-{SnO_2}$(5 wt.%) thick film heat treated at $600^{\circ}C$ showed higher sensitivity to i-${C_4}H_{10}$ and CO gases than other thick-films. ${Co_3}{O_4}-{SnO_2}$(5 wt.%) thick film heat treated at $600^{\circ}C$ showed the sensitivity of 170 % to 3000 ppm iso-${C_4}H_{10}$ gas and 100 % to 100 ppm CO gas at the working temperature of $250^{\circ}C$. The response time to i-${C_4}H_{10}$ and CO gases showed rise time of about 10 seconds and fall time of about $3{\sim}4$ minutes. The selectivity to i-${C_4}H_{10}$ and CO gases was enhanced in the ${Co_3}{O_4}-{SnO_2}$(5 wt.%) thick film.

An Experimental Study on the Thermal Performance of a Concentric Annular Heat Pipe

  • Boo Joon Hong;Park Soo Yong;Kim Do Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • 제19권4호
    • /
    • pp.1036-1043
    • /
    • 2005
  • Concentric annular heat pipes (CAHP) were fabricated and tested to investigate their thermal characteristics. The CAHPs were 25.4 mm in outer diameter and 200 mm in length. The inner surface of the heat pipes was covered with screen mesh wicks and they were connected by four bridge wicks to provide liquid return path. Three different heat pipes were fabricated to observe the effect of change in diameter ratios between 2.31 and 4.23 while using the same outer tube dimensions. The major concern of this study was the transient response as well as isothermal characteristics of the heat pipe outer surface, considering the application as uniform heating device. A better performance was achieved as the diameter ratio increased. For the thermal load of 180 W, the maximum temperature difference on the outer surface in the axial direction of CAHP was $2.3^{\circ}C$ while that of the copper block of the same outer dimension was $5.9^{\circ}C.$ The minimum thermal resistance of the CAHP was measured to be $0.004^{\circ}C/W.$ In regard to the transient response during start-up, the heat pipe showed almost no time lag to the heat source, while the copper block of the same outer dimensions exhibited about 25 min time lag.

The Effects of the Installation Conditions of Ground Loop Heat Exchanger to the Thermal Conductivity and Borehole Resistance (지중열교환기 설치 조건이 지중 유효 열전도도와 보어홀 열저항에 미치는 영향)

  • Lim, Hyo-Jae;Kong, Hyoung-Jin;Kang, Sung-Jae;Choi, Jae-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제23권2호
    • /
    • pp.95-102
    • /
    • 2011
  • A ground loop heat exchanger in a ground source heat pump system is an important unit that determines the thermal performance of a system and its initial cost. A proper design requires certain site specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This study was performed to investigate the effect of some parameters such as borehole lengths, various grouting materials and U tube configurations on ground effective thermal conductivity and borehole thermal resistance. In this study, thermal response tests were conducted using a testing device to 9 different ground loop heat exchangers. From the experimental results, the length of ground loop heat exchanger affects to the effective thermal conductivity. The results of this experiment shows that higher thermal conductivity of grouting materials leads to the increase effective thermal conductivity from 22 to 32%. Also, mounting spacers have increased by 14%.

3-Dimensional NiCo2O4 nanostructure prepared by hydrothermal process and its application for glucose sensor (수열합성에 의한 3차원 구조의 NiCo2O4 제조 및 글루코스 센서로서의 응용)

  • Jang, Kyu-bong;Mhin, Sungwook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제31권2호
    • /
    • pp.78-83
    • /
    • 2021
  • In this study, we prepared NiCo2O4 nanoparticles with large surface area by hydrothermal synthesis. In order to optimize the processing conditions for spinel NiCo2O4 nanoparticles with large surface area, experimental variables including concentration of Ni and Co precursor, reaction time, and temperature for post-heat treatment were evaluated. Optimized conditions for spinel NiCo2O4 with large surface area were [Ni]/[Co] 1:2 ratio, reaction time for 12 h, and post-heat treatment at 400℃. To investigate the feasibility as potential application for glucose sensor, electrochemical tests of the prepared NiCo2O4 nanoparticles in response to glucose was performed, which suggests that the NiCo2O4 can be suitable for a non-enzymatic-based electrochemical glucose sensor based on its high sensitivity and selectivity for glucose detection.

$Co_{3}O_{4}$ butane gas sensor operating at low temperature (I) (저온동작용 $Co_{3}O_{4}$ 부탄가스 감지 소자(I))

  • Chung, Jin-Hwan;Choi, Soon-Don
    • Journal of Sensor Science and Technology
    • /
    • 제5권6호
    • /
    • pp.7-14
    • /
    • 1996
  • In order to develop gas sensor operating at low temperature, thick film $Co_{3}O_{4}$ sensor was fabricated. $Co_{3}O_{4}$ powder was prepared by precipitation from cobalt nitrate solution and the powders containing ethylene glycol as a binder was screen-printed on alumina substrate. Characteristics of sensitivity, response time, and recovery were investigated in terms of binder content and heat treating conditions. The $Co_{3}O_{4}$ sensor contained 15% ethylene glycol and heat-treated at $300^{\circ}C$ for 24hr showed the highest sensitivity at the operating temperature of $250^{\circ}C$. Its sensitivity of 1.1 to 5000ppm butane gas was very high, as compared with $0.8{\sim}0.85$ at the operating temperature of $350{\sim}400^{\circ}C$ for a commercial $SnO_{2}$ gas sensor. It is found that response time was fast, but recovery was poor for the sensor.

  • PDF