• Title/Summary/Keyword: Nickel

Search Result 2,856, Processing Time 0.029 seconds

Electroplating of Nickel on Nickel Titanate Modified Mild Steel Surface

  • Beenakumari, K.S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.57-60
    • /
    • 2013
  • Nickel is a good electrocatalytic metal and nickel electrodes find many applications in different electrochemical fields. The nickel plated electrodes were prepared by electro-deposition technique on mild steel surface modified with in-situ deposition of nickel titanate. The SEM images shows that the nickel plating on nickel titanate modified mild steel shows better adherence than the nickel plating on bare mild steel surfaces. The extent of polarization of the nickel plating on mild steel with nickel titanate was lower than that of nickel plating on mild steel. The incorporation of nickel titanate on mild steel surface before nickel plating enhances physical, chemical and electrochemical properties of the plating film.

ELECTROLESS PLATING OF NICKEL FOR MICRO-STRUCTURE FABRICATION

  • Jin, Huh;Lee, Jae-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.331-335
    • /
    • 1999
  • Electroless plating nickel has superior mechanical property to electroplated nickel. Furthermore nickel can be coated on nonconducting substrate. In this research, electroless plating of nickel were conducted in different bath condition to find optimum conditions of electroless nickel plating for MEMS applications. The selectivity of activation method on several substrates was investigated. The effects of nickel concentration, reducing agent concentration and inhibitor on deposition rate were investigated. The effect of pH on deposition rate and content of phosphorous in deposited nickel was also investigated.

  • PDF

Thermally Stabilized Porous Nickel Support of Palladium Based Alloy Membrane for High Temperature Hydrogen Separation

  • Ryi, Shin-Kun;Park, Jong-Soo;Cho, Sung-Ho;Hwang, Kyong-Ran;Kim, Sung-Hyun
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.133-139
    • /
    • 2007
  • Nickel powder was coated with aluminum nitrate solution to increase the thermal stability of a porous nickel support and control the nickel content in the Pd-Cu-Ni ternary alloyed membrane. Raw nickel powder and alumina coated nickel powder were uniaxialy pressed by home made press with metal cylindrical mold. Though the used nickel powder prepared by pulsed wire evaporation (PWE) method has a good thermal stability, the porous nickel support was too much sintered and the pores of porous nickel support was plugged at high temperature (over $800^{\circ}C$) making it not suitable for the porous support of a palladium based composite membrane. In order to overcome this problem, the nickel powder was coated by alumina and alumina modified porous nickel support resists up to $1000^{\circ}C$ without pore destruction. Furthermore, the compositions of Pd-Cu-Ni ternary alloy membrane prepared by magnetron sputtering and Cu-reflow could be controlled by not only Cu-reflow temperature but also alumina coating amount. SEM analysis and mercury porosimeter analysis evidenced that the alumina coated on the surface of nickel powder interrupted nickel sintering.

Study on the Preparation of Nickel Cabonate Using Nickel Chloride Prepared from Nickel MHP (니켈 MHP로부터 제조된 염화니켈을 이용한 탄산니켈 제조연구)

  • Kang, Yong-Ho;Shin, Gi-Wung;Hyun, Soong-Keun
    • Resources Recycling
    • /
    • v.27 no.5
    • /
    • pp.23-29
    • /
    • 2018
  • Generally $NiSO_4$ and $NiCl_2$ were used as raw materials for producing nickel carbonate. In the case of the produced nickel carbonate, $Na_2SO_4$ and NaCl are generated on the surface and inside of the nickel carbonate to decrease the purity of the nickel carbonate. High purity nickel carbonate can be produced according to the degree of removal of such impurities. In this study, $NiCl_2$ produced by nickel MHP solvent extraction process was used to study the production of nickel carbonate. High purity nickel carbonate was prepared by the conditions according to the nickel salt and carbonate equivalence ratio, the reduction of Na and Cl in nickel carbonate according to the washing of nickel carbonate, and the reduction of Na and Cl according to the washing water temperature.

Nickel Amalgamation by Electro-deposition Process Using Mercury Cathode and Its Properties (수은 음극 상 전착에 의한 니켈 아말감의 제조와 그 물성)

  • Kim, Ki-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.5
    • /
    • pp.198-201
    • /
    • 2005
  • Nickel amalgam was Prepared by the electro-deposition with mercury cathode in a modified Watts bath. Homogeneous nickel amalgam was obtained. The fluidity of the amalgam decreased gradually with increased nickel quantity and become solid finally. Nickel powders of sub-micron size were obtained by a distillation of mercury from the amalgam. The characterization of the nickel amalgam was studied by SEM and x-ray diffractometry.

Inhibitory Effects of Magnesuim Carbonate on Cytotoxicity, Genotoxicity, Mutagenicity, and Cell Transformation by Nickel Subsulfide (Nickel Subsulfide의 세포독성, 유전독성, 변이원성 및 세포변이에 대한 Magnesuim Carbonate의억제효과)

  • 하은희;홍윤철;윤임중
    • Environmental Mutagens and Carcinogens
    • /
    • v.19 no.1
    • /
    • pp.20-27
    • /
    • 1999
  • In order to know the inhibitory effect of magnesium carbonate(MgCO3) on cytotoxicity, DNA damage, mutagenicity, and cell transforming ability of nickel subsulfide, the inhibition of cell proliferation, DNA-protein crosslinks formation (DPC), HGPRT point mutation, and cell transformation were evaluated. Nickel subsulfide(Ni3S2) and magnesium carbonate as insoluble compounds were used for this study. BALB/3T3 cell, CHO-K1 cell, and C3H10T1/2 cell were used in this experiment. Exposure concentration of nickel subsulfide was 1 $\mu\textrm{g}$/ml. The concentrations of magnesium carbonate in this study were 0.6 $\mu\textrm{g}$/ml, 1.2 $\mu\textrm{g}$/ml, 2.4 $\mu\textrm{g}$/ml and the molar ratio of magnesium to nickel when exposed simultanously were 0.5, 1.0 and 2.0 respectively. The results were as follows; 1. Magnesium carbonate reduced the inhibitory effect of nickel subsulfide on cell proliferation. 2. Magnesium carbonate also reduced the effect of nickel subsulfide on DNA-protein crosslinks formation. 3. HGPRT point mutagenicity of nickel subsulfide was reduced when magnesium carbonate treated simultaneously. 4. Magnesium carbonate reduced cell transforming ability of nickel subsulfide. Conclusively, nickel subsulfide showed cytotoxicity, cell transforming ability, and mutagenicity strongly and magnesium carbonate may have protective roles in these nickel effects.

Recovery of Nickel from Spent Electroless Nickel Plating Baths

  • Tanaka, Mikiya;Kobayashi, Mikio;Seki, Tsutomu
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.270-274
    • /
    • 2001
  • With Increasing importance of electroless nickel plating technology in many fields such as electronic and automobile industries, the treatment of the spent baths is becoming a serious problem. These spent baths contain iron and zinc as impurities, organic acids as complexing reagents, and phosphonate ions as oxidized species of tile reducing reagent. as well as several grams per liter of nickel. The spent baths are currently treated by conventional precipitation method. but a mettled with no sludge generation is desired. This work aims at establishing a recycling process of nickel from tile spent baths using solvent extraction. Extraction behaviors of nickel. iron. and zinc in various 쇼pes of real spent baths are investigated as a function of pH using LIX841, di (2-ethylhexyl)phosphoric acid (D2EHPA), and PC88A as tile extractants. Nickel is extracted by LIX84I at the equilibrium pH of more than 6 with high efficiency. For the weakly acid baths. iron and zinc are extracted by D2EHPA or PC88A without adjusting the pH of the baths leaving nickel in the aqueous phase. Stripping of nickel from LIX84I with sulfuric acid is also investigated. It is shown that concentrated nickel sulfate solution (> 100 ㎏-Ni/㎥) is obtained. This solution can be reused in the electroless plating process. Based on these findings, flow sheets for recovering nickel from the spent baths are proposed.

  • PDF

Hydrogen Reduction of a Black Nickel Oxide Ore in a Fluidized-Bed Reactor without Sticking

  • Oh, Chang Sup;Hong, Seung-Hun;Lee, Dong-Kyu;Kim, Hang Goo;Kim, Yong Ha
    • Korean Journal of Materials Research
    • /
    • v.27 no.2
    • /
    • pp.63-68
    • /
    • 2017
  • A black nickel oxide powder, one of the commercial nickel oxide ores, was reduced by hydrogen gas in a batch-type fluidized-bed reactor in a temperature range of 350 to $500^{\circ}C$ and in a residence time range of 5 to 120 min. The hydrogen reduction behavior of the black nickel oxide was found to be somewhat different from that of green nickel oxide ore. For the black nickel oxide, the maximum temperature (below which nickel oxide particles can be reduced without any agglomeration) was significantly lower than that observed for the green nickel oxide. In addition, the best curve fittings of the Avrami model were obtained at higher values of the overall rate constant "k" and at lower values of the exponent "m", compared to those values for the green nickel oxide. It may be inferred from these results that the hydrogen reduction rate of the black nickel oxide is faster than that of the green nickel oxide in the early stages, but the situation reverses in the later stages. For the black nickel oxide ore, in spite of the low temperature sintering, it was possible to achieve a high degree fluidized-bed reduction at lower temperatures and at lower gas consumption rates than was possible for the green nickel oxide. In this regard, the use of black nickel oxide is expected to yield a benefit if its ore price is sufficiently lower than that of the green nickel oxide.

Fabrication of Nickel Nano and Microstructures by Redeposition Phenomena in Ion Etching Process (이온식각공정의 재증착 현상을 이용한 니켈 마이크로 나노 구조물 제작)

  • Jung, Phill-Gu;Hwang, Sung-Jin;Lee, Sang-Min;Ko, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.50-54
    • /
    • 2007
  • Nickel nano and microstructures are fabricated with simple process. The fabrication process consists of nickel deposition, lithography, nickel ion etching and plasma ashing. Well-aligned nickel nanowalls and nickel self-encapsulated microchannels were fabricated. We found that the ion etching condition as a key fabrication process of nickel nanowalls and self-encapsulated microchannels, i.e., 40 sccm Ar flow, 550 W RF power, 15 mTorr working pressure, and $20^{\circ}C$ water cooled platen without using He backside cooling unit and with using it, respectively. We present the experimental results and discuss the formational conditions and the effect of nickel redeposition on the fabrication of nickel nano and microstructures.

Recovery of Nickel and Copper from Scraped Nickel Condensers

  • Liang, Ruilu;Kikuchi, Eiji;Kawabe, Yoshishige;Sakamoto, Hiroshi;Fujita, Toyohisa
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.188-192
    • /
    • 2001
  • Magnetic separation and sulphidization-flotation for recovery of nickel and copper from two types of scraped condenser wastes, containing 8- l4% nickel and 2-4% copper, were studied. The effects of magnetic field intensities, classification, and grinding on the recovery of nickel and copper were investigated. According to the characteristics of nickel and copper in the scraps, classification-magnetic separation, different magnetic field intensities, and stages-grinding-cleaning of rough concentrate were investigated. The nickel concentrates containing 38-65% nickel with 84-97% recoveries and the copper concentrates containing 25-43% nickel with 35-60% recoveries were obtained by classification-magnetic separation. In addition, copper concentrates containing 26-45% copper with 76-88% recoveries were obtained by sulphidization-flotation from magnetic tailings and middling products.

  • PDF