DOI QR코드

DOI QR Code

PEKK(Polyetherketoneketone) Surface Treatment Effects on Shear Bond Strength to Dental Veneering Resin

PEKK(Polyetherketoneketone) 표면처리가 치과용 베니어 레진의 전단결합강도에 미치는 영향

  • Moon, Yun-Hee (Department of Dental Technology, Daejeon Health Institute of Technology)
  • 문윤희 (대전보건대학교 치기공학과)
  • Received : 2019.02.19
  • Accepted : 2019.04.05
  • Published : 2019.04.30

Abstract

The purpose of this study was to investigate the bond strength between PEKK(Polyetherketoneketone) and Sinfony(3M ESPE, Seefeld, Germany) the dental composite resin by proposing the three representative surface treatment methods and evaluate to see if they affect the bond strength between two materials. A total of 30 PEKK($Pekkton^{(R)}$ Ivory, $Cendres+M{\acute{e}}taux$, Bienne, Switzerland) specimens were prepared, embedded in acrylic resin, polished(P 1200 grid) to surface, and each group was divided into 10 specimens. After then, by the surface treatment method, it classified into three groups(n=10) such as Air abrasion group(PN), applying Single Bond Universal(3M ESPE) after Air abrasion(PB), applying OPAQUE(3M ESPE) after Air abrasion(PO). Then, veneering was performed by using Sinfony(3M ESPE, Seefeld, Germany). All completed specimens were allowed to rest in a $37^{\circ}C$ water bath for 24 hours. Shear bond strength of each group was measured and fracture patterns were classified. Statistic analysis was performed with One-way ANOVA followed by post hoc Scheffe tast (p<.05). Statistical analysis was performed using the SPSSWIN 21.0 program. As a result of one-way ANOVA, the average value of PB group was $27.67{\pm}4,18MPa$ and it was shown as the highest bond strength, PN and PO were $20.43{\pm}1.70$ and $19.8{\pm}4.77MPa$ each, and these were relatively low(F=18.4, P<.001), and as the post-test the Scheffe test was conducted and verified (p<.05). After examining the scheffe test, it was showed significant differences as PB>PO, PB>PN(p<.001). Through this study, in order to enhance the bonding force between PEKK and the composite resin, perform the Air abrasion and surface treatment by using Single Bond Universal(3M ESPE) is recommended, and as coMPared with other studies. And it is assumed that the increase of the application time of the Air abrasion affects the increase of the shear bond strength. Thus, further research is required.

본 연구의 목적은 PEKK(Polyetherketoneketone)와 치과용 복합수지인 Sinfony(3M ESPE, Seefeld, Germany)사이의 결합강도를 알아보고자 하는 것으로 대표적인 표면처리방식 세가지를 제시하여 두 재료간 결합강도에 영향을 미치는지에 대하여 평가하고자 하였다. 총 30개의 PEKK ($Pekkton^{(R)}$ Ivory, $Cendres+M{\acute{e}}taux$, Bienne, Switzerland)시편을 준비한 후 아크릴릭 레진에 포매한 후 표면 연마(P 1200 grid)하고 각 그룹을 10개의 시편으로 나누어 Air abrasion을 실시한 군(PN), Air abrasion을 실시한 후 Single Bond Universal(3M ESPE)을 적용한 군(PB), Air abrasion을 실시한 후 OPAQUE(3M ESPE)를 적용한 군(PO)의 표면처리 방식에 의해 3그룹으로 분류하였다(n=10). 이후 Sinfony(3M ESPE, Seefeld, Germany)를 이용하여 Veneering을 실시하였다. 완성된 모든 시편은 24시간동안 $37^{\circ}C$의 수조에 휴지시켰다. 각 그룹의 전단결합강도를 측정하고 파절양상을 분류하였다. 집단에 따른 전단결합강도 차이를 살펴보기 위하여 일원배치분산분석(one-way ANOVA)을 실시하였으며(p<.05), 사후분석으로는 Scheffe test를 실시하여 검증하였다(p<.05). 통계처리는 SPSSWIN 21.0 프로그램을 사용하여 분석하였다. 일원배치분산분석(one-way ANOVA)을 실시한 결과, PB그룹의 평균값은 $27.67{\pm}4,18MPa$로 가장 높은 결합강도를 나타냈으며, PN과 PO는 각각 $20.43{\pm}1.70$$19.8{\pm}4.77MPa$로 상대적으로 낮은 결합강도를 보였고(F=18.4, P<.001), 사후검증(scheffe test)을 살펴본 결과 PB>PO, PB>PN으로 유의한 차이를 보였다(p<.001). 본 연구를 통해 PEKK와 복합수지 사이의 결합력을 증진시키기 위하여 Air abrasion 실시 후 Single Bond Universal(3M ESPE)을 이용하여 표면처리할 것을 권장할 수 있으며 타 연구와 비교하여 볼 때 Air abrasion의 적용 시간의 증가가 전단결합강도의 증가에 영향을 미치는 것으로 유추되므로 추가적인 연구의 진행이 필요할 것으로 사료된다.

Keywords

SHGSCZ_2019_v20n4_93_f0001.png 이미지

Fig. 1. Schematic diagram of specimen configuration.(a) Three dimensional view (b) side view

SHGSCZ_2019_v20n4_93_f0002.png 이미지

Fig. 2. Experimental setup in the shear bond strength.

SHGSCZ_2019_v20n4_93_f0003.png 이미지

Fig. 3. Mean and standard deviation for experimentalgroups.

SHGSCZ_2019_v20n4_93_f0004.png 이미지

Fig. 4. Failure modes after shear bond strength test. PN: air abrasion processed PEEK, PB: bonding after air abrasion processed PEEK, PO: opaque layer after air abrasion processed PEEK.

Table 1. Summary of surface treatment protocols for each group.

SHGSCZ_2019_v20n4_93_t0001.png 이미지

Table 2. Mean and standard deviation of the shear bond strength.

SHGSCZ_2019_v20n4_93_t0002.png 이미지

Table 3. Results of one-way ANOVA on the shear bond strength.

SHGSCZ_2019_v20n4_93_t0003.png 이미지

References

  1. Gardner KH, Hsiao BS, Matheson RR, Wood BA. Structure, crystallization and morphology of poly (aryl ether ketone ketone). Polymer, Vol.33, No.12, pp.2483-2495, 1992. DOI: https://doi.org/10.1016/0032-3861(92)91128-O
  2. Harsha, A. An investingation on low stress abrasive qear characteristics of high performance engineering thermoplastic polymers. Wear, Vol.271, No.5-6, pp.943-951, June. 2011. DOI: https://doi.org/10.1016/j.wear.2011.03.019
  3. Harsha, A. Tewari U. Tribo performance of polyaryletherketone composites.Polym Test. 2002;21:697-709.7. Polymer Testing, Vol.21, No.6, pp.697-709, 2002. DOI: https://doi.org/10.1016/S0142-9418(01)00145-3
  4. Geringer J, Tatkiewicz W, Rouchouse G. Wear behavior of PAEK, poly(aryl-ether-ketone), under physiological conditions, outlooks for performingthese materials in the field of hip prosthesis. Wear, Vol.271, No.11-12, pp.2793-803, Sep. 2011. DOI: https://dx.doi.org/10.1016/j.wear.2011.05.034
  5. Reich S, Wichmann M, Nkenke E, Proeschel P. Clinical fit of all-ceramic three-unit fixed partial dentures, generated with three different CAD/CAM systems. Eur J Oral Sci, Vol.113, No.2, pp.174-179, Apr. 2005. DOI: https://doi.org/10.1111/j.1600-0722.2004.00197.x
  6. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinalimplants. Biomaterials, Vol.28, No.32, pp.4845-4869, Nov. 2007. DOI: https://dx.doi.org/10.1016%2Fj.biomaterials.2007.07.013 https://doi.org/10.1016/j.biomaterials.2007.07.013
  7. Williams D, McNamara A, Turner R. Potential of polyetheretherketone(PEEK) and carbon-fibre-reinforced PEEK in medical applications. J Mater Sci Lett, Vol.6, No.2, pp.188-190, Feb. 1987. https://doi.org/10.1007/BF01728981
  8. Polyethererherketon (PEEK). Part II: Application in clinical practice. Acta Chir Orthp Traumatol Cech, Vol.77, No.6, pp.470-8, 2010.
  9. Sproesser O, Schmidlin PR, Uhrenbacher J, Roos M, Gernet W, Stawarczyk B. Effect of sulfuric acid etching of polyetheretherketone on the shear bond strength to resin cements. J Adhes Dent, Vol.16, No.5, pp.465-572, Nov. 2014. DOI: https://doi.org/10.3290/j.jad.a32806
  10. Schmidlin PR, Stawarczyk B, Wieland M, Attin T, Ha mmerle CH, Fischer J. Effect of different surface pre-treatments and luting materials on shear bond strength to PEEK. Dent Master, Vol.26, No.6, pp.553-559, June. 2010. DOI: https://doi.org/10.1016/j.dental.2010.02.003
  11. Stawarczyk B, Jordan P, Schmidlin PR, Roos M, Eichberger M, Gernet W, Keul C. PEEK surface treatment effects on tensile bond strength to veneering resins. J Adhes Dent, Vol.112, No.5, pp.1278-1288, Nov. 2014. DOI: https://doi.org/10.1016/j.prosdent.2014.05.014
  12. Ki-Sun LEE, Myoung-Sic Shin, Jeong-Yol Lee, Jae-Jun Ryu, Ssng-Wan Shin. Shear bond strength of composite resin to high performance polymer PEKK according to surface treatments and bonding materials. J Adhes Dent, Vol.9, No.5, pp.350-357, Oct. 2017. DOI: https://doi.org/10.4047/jap.2017.9.5.350
  13. Eun-kyung Kim. A coMParative study of bond strangth of polyetherketonketon(PEKK) and cobalt-chromium alloy to denture base resin. a Master's thesis. Dankook University Graduate school department of Prosthodontics, cheonan, Korea, pp.22, 2017.
  14. Dunder M, Ozcan M, Comlekoglu E, Gungor MA, Artunc C. Bond strengths of veneering ceramics reinforced ceramic core materials. Int J Prosthodont, Vol.23, No.5, pp.630-636, May. 2007. DOI: https://doi.org/10.1016/j.dental.2006.05.004
  15. Derand T, Molin M, Kvam K. Bond strength of composite luting cement to zirconia ceramic surfaces. Dent Mater, Vol.21, No.12, pp.1158-1162, Dec. 2005. DOI: https://doi.org/10.1016/j.dental.2005.02.005