• Title/Summary/Keyword: PEKK

Search Result 20, Processing Time 0.019 seconds

Characterization of the mechanical behavior of PEKK polymer and C/PEKK composite materials for aeronautical applications below and above the glass transition temperature

  • Pedoto, Giuseppe;Smerdova, Olga;Grandidier, Jean-Claude;Gigliotti, Marco;Vinet, Alain
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.6
    • /
    • pp.475-493
    • /
    • 2020
  • This paper is focused on the characterization of the thermomechanical properties of semicrystalline poly-ether-ether-ketone (PEKK) and of carbon fiberreinforced thermoplastic based laminated composites (C/PEKK) below and above the glass transition temperature (Tg). Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA) and tensile tests are carried out on both pure PEKK polymer and [(±45)2, +45]s C/PEKK composite samples, showing a significant similarity in behavior. The employment of a simple micromechanical model confirms that the mechanical and physical behavior of the polymer and that of the matrix in the composite are similar.

Case series of implant-supported fixed prostheses using a high-performance polymer (PEKK) framework veneered with three different materials for six years (고기능성 폴리머(PEKK)를 프레임워크로 하는 임플란트 지지 고정성 보철물의 6년 경과관찰 증례)

  • Yeon-Kyung Park;Ji-Suk Shim;Jeong-Yol Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.62 no.1
    • /
    • pp.20-27
    • /
    • 2024
  • As a high-performance polymer, Polyetherketoneketone (PEKK) has good biocompatibility and excellent physical properties and is used in several areas, including dentistry. Many successful cases of implant-supported fixed prostheses with a PEKK framework have been reported; however, a long-term observation of the reported cases and discussion of complications are not available. In this case report, we present three cases of implant-supported fixed prostheses with a PEKK framework veneered with composite resin, lithium disilicate crown, and high-impact polymethyl methacrylate (PMMA), and discuss their 6-year follow-up results.

Surface characteristics and bonding performance of polymer restorative materials for dental CAD/CAM systems (치과 캐드캠 시스템에서 사용되는 고분자 수복재료들의 표면특성과 접착양상)

  • Kim, Jae-Hong;Kim, Ki-Baek
    • Journal of Technologic Dentistry
    • /
    • v.41 no.3
    • /
    • pp.203-209
    • /
    • 2019
  • Purpose: The purpose of this study was to investigate the mechanical properties of polymer prosthetic and restorative materials for dental CAD/CAM using two test method; surface characteristics and shear bond strength. Methods: Commercialized CAD/CAM polymer blanks were investigated; One kinds of PMMA, and one PEKK blanks. A total of 20 PMMA and PEKK specimens were prepared, and each group was divided into 10 specimens. Average surface roughness was observed under surface profilometer. The contact angle was measured with a surface electrooptics. The bond strength was evaluated by a universal testing machine at a crosshead speed of 5mm/min. The data were statistically analyzed using independent t-test and Fisher's exact test(P<0.05). Results: The PMMA and PEKK group showed a significant difference in the shear bond strength with the composite resin(P<0.05). The surface roughness of the PEKK group was higher than that of the PMMA group. The fracture mode were observed in PEKK groups with 50% showing adhesive remnant index score. Conclusion: PEEK is used as substructure material and composite veneering material is applied. PEKK resins will contribute to the development of successful products that will provide structural and aesthetic satisfaction.

Evaluation of the initial retention of implant-retained attachments made of dental polyaryletherketones (PAEKs) (Polyaryletherketones (PAEKs)로 제작된 임플란트 유지형 어태치먼트의 유지력 평가)

  • Soo-chul Park;Sung-Min Kim
    • Journal of Technologic Dentistry
    • /
    • v.45 no.3
    • /
    • pp.61-66
    • /
    • 2023
  • Purpose: The current study examined the retention and wear resistance of stud-type attachments made of high-performance polyetheretherketone (PEEK) or polyetherketoneketone (PEKK) from the polyaryletherketones (PAEKs) family. Methods: The study sample included 10 PEEK or PEKK attachments that were mounted onto their male parts, designed on the upper aspect of the attachment, with a load of 30 N. Tensile stress was applied using an Instron machine to separate the male and female parts, and the maximum tensile stress to be applied was determined based on the retention force observed. The wear resistances of PEEK and PEKK were evaluated by measuring the inner diameter of the inserted female part 10 times. Results: The maximum tensile stresses of PEEK and PEKK were 56.26±0.58 and 69.12±0.92 N, respectively, with the maximum stress required to remove the PEKK specimens from the abutment being 12.86 N higher than that required to remove the PEEK specimens. Furthermore, PEKK exhibited higher wear resistance than PEEK. Conclusion: This study evaluated custom-made removable implant-retained attachment components for overdentures, wherein the female parts were made of PEEK or PEKK. The retention stress and wear resistance were evaluated based on the type of attachment material, and the results showed that both types of attachment inserts demonstrated clinically acceptable results in terms of retention.

Analysis of Thermal Degradation Mechanism by Infrared High-speed Heating of CF-PEKK Composites in Hot Press Forming (핫프레스 공정 기반 CF-PEKK 복합재의 근적외선 고속가열에 의한 열적 열화 반응의 메커니즘 분석)

  • Lee, Kyo-Moon;Park, Soo-Jeong;Park, Ye-Rim;Park, Seong-Jae;Kim, Yun-Hae
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.93-97
    • /
    • 2022
  • The application of infrared heating in the hot press forming of the thermoplastic composites is conducive to productivity with high-speed heating. However, high energy, high forming temperature, and high-speed heating derived from infrared heating can cause material degradation and deteriorate properties such as re-melting performance. Therefore, this study was conducted to optimize the process conditions of the hot press forming suitable for carbon fiber reinforced polyetherketoneketone(CF/PEKK) composites that are actively researched and developed as high-performance aviation materials. Specifically, the degradation mechanisms and properties that may occur in infrared high-speed heating were evaluated through morphological and thermal characteristics analysis and mechanical performance tests. The degradation mechanism was analyzed through morphological investigation of the crystal structure of PEKK. As a result, the size of the spherulite decreased as the degradation progressed, and finally, the spherulite disappeared. In thermal characteristics, the melting temperature, crystallization temperature and heat of crystallization tend to decrease as degradation progresses, and the crystal structure disappeared under long-term exposure at 460℃. In addition, the low bonding strength was observed on the degraded surface, and the bonding surfaces of PEKK did not melt intermittently. In conclusion, it was confirmed that the CF/PEKK composite material degraded at 420℃ in the infrared high-speed heating. Furthermore, the spherulite experienced morphological changes and the re-melting properties of thermoplastic materials were degraded.

A Preliminary study of Biomechanical Behavior of High-Performance Polymer Post-Core System (고성능 폴리머 재질의 포스트-코어 시스템의 생역학적 거동에 대한 예비실험)

  • Lee, Ki-Sun;Kim, Jong-Eun;Kim, Jee-Hwan;Lee, Jeong-Yol;Shin, Sang-Wan
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.27 no.2
    • /
    • pp.75-81
    • /
    • 2018
  • The aim of this study was to evaluate the biomechanical behavior and long-term safety of high performance polymer PEKK as an intraradicular dental post-core material through comparative finite element analysis (FEA) with other conventional post-core materials. A 3D FEA model of a maxillary central incisor was constructed. A cyclic loading force of 50 N was applied at an angle of $45^{\circ}$ to the longitudinal axis of the tooth at the palatal surface of the crown. For comparison with traditionally used post-core materials, three materials (gold, fiberglass, and PEKK) were simulated to determine their post-core properties. PEKK, with a lower elastic modulus than root dentin, showed comparably high failure resistance and a more favorable stress distribution than conventional post-core material. However, the PEKK post-core system showed a higher probability of debonding and crown failure under long-term cyclic loading than the metal or fiberglass post-core systems.

Maxillar implant-retained overdenture using CAD/CAM milled zirconia bar with PEKK sleeve: a case report (상악 무치악 환자에서 가공 지르코니아 바와 PEKK 슬리브를 이용한 임플란트 피개의치 증례)

  • Ju, Jin-Seok;Cho, Jin-Hyun;Lee, Cheong-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.4
    • /
    • pp.307-313
    • /
    • 2017
  • The object of this case report is to introduce milled zirconia bar and PEKK female part made by CAD/CAM technology for bar attachment implant supported overdenture in maxillary edentulous patients. For over 2 years, in terms of function and esthetics, satisfactory result was obtained. Esthetically and functionally satisfactory results were obtained in periodic follow up check.

Fabrication of a custom polyetherketoneketone post-and-core with digital technology

  • Ju-Hyoung Lee;Gyu-Heon Lee
    • Journal of Technologic Dentistry
    • /
    • v.46 no.1
    • /
    • pp.15-19
    • /
    • 2024
  • An ideal post material should have physical properties similar to those of dentin. Post materials with high elastic moduli may cause root fractures. This clinical report describes the treatment of a severely damaged tooth using a recently introduced material. Polyetherketoneketone (PEKK) is a semicrystalline high-performance thermoplastic polymer. PEKK is a promising material for custom post-and-core fabrication because of its elasticity close to that of dentin, good shock absorbance, machinability, and low cost. A laboratory scanner was used to digitize the conventional impression of a severely damaged maxillary right first molar. A custom PEKK post-and-core was designed and milled using computer-aided design and computer-aided manufacturing technology. Using the proposed technique, a custom PEKK post-and-core was fabricated accurately and human error was reduced. Restoration was luted with resin cement. Custom PEKK post-and-core restorations are a viable alternative for treating severely damaged teeth.

Effect of non-thermal plasma on the shear bond strength of resin cements to Polyetherketoneketone (PEKK)

  • Labriaga, Wilmart;Song, So-Yeon;Park, Jin-Hong;Ryu, Jae-Jun;Lee, Jeong-Yol;Shin, Sang-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.6
    • /
    • pp.408-414
    • /
    • 2018
  • PURPOSE. This study aimed to assess the effect of non-thermal plasma on the shear bond strength of resin cements to polyetherketoneketone (PEKK) in comparison to other surface treatment methods. MATERIALS AND METHODS. Eighty PEKK discs were subjected to different surface treatments: (1) Untreated (UT); (2) Non-thermal plasma (NTP); (3) Sandblasting with $50{\mu}m$ $Al_2O_3$ particles (SB); and (4) Sandblasting + Non-thermal plasma (SB+NTP). After each surface treatment, the contact angle was measured. Surface conditioning with Visio.Link was applied in all groups after pre-treatment. RelyX Unicem resin cement was bonded onto the PEKK specimens. After fabrication of the specimens, half of each group (n=10) was initially tested, while the other half was subjected to thermocycling ($5^{\circ}C$ to $55^{\circ}C$ at 10,000 cycles). Shear bond strength (SBS) testing was performed using a universal testing machine, and failure modes were assessed using stereomicroscopy. The SBS results were analyzed statistically using one-way ANOVA followed by Tukey's post hoc test. Independent t-test was used to examine the effect of thermocycling (P<.05). RESULTS. The highest SBS values with or without thermocycling were observed with PEKK specimens that were treated with SB+NTP followed by the SB group. The lowest SBS results were observed in the UT groups. CONCLUSION. The shear bond strength between PEKK and resin cements was improved using non-thermal plasma treatment in combination with sandblasting.

Adhesive Strength and Interface Characterization of CF/PEKK Composites with PEEK, PEI Adhesives Using High Temperature oven Welding Process (고온 오븐 접합을 적용한 PEEK, PEI 기반 CF/PEKK 복합재의 접착 강도 및 계면 특성 평가)

  • Park, Seong-Jae;Lee, Kyo-Moon;Park, Soo-Jeong;Kim, Yun-Hae
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.86-92
    • /
    • 2022
  • This study was conducted to determine the effect of molecular formation of adhesive on interface characterization of thermoplastic composites. Carbonfiber/polyetherketoneketone (CF/PEKK) thermoplastic composites were fusion bonded and PEEK, PEI adhesive bonded using a high-temperature oven welding process. In addition, lap shear strength test and fracture surface analysis using a digital optical microscope and a scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR) were performed. As a result, the adhesive bonding method improved adhesion strength with interphase having increased molecular formation of ether groups, ketone groups, and imide groups which mainly constitutes the CF/PEKK and adhesives. Furthermore, it was found that the use of PEEK containing more ether groups and ketone groups forms a more strongly bonded interphase and enhances the adhesive force of the CF/PEKK composites.