• Title/Summary/Keyword: Opague

Search Result 2, Processing Time 0.018 seconds

Studies on Bacterial Characteristics of Bacillus cereus Group LS-1 Isolated from Suyeong Bay (수영만에서 분리된 Bacillus cereus Group LS-1 의 세균학적 특성에 관한 연구)

  • 성희경;이원재;김용호;함건주
    • Korean Journal of Microbiology
    • /
    • v.30 no.5
    • /
    • pp.339-346
    • /
    • 1992
  • These studies were carried out to identify Bacillus cereus group 1..5-] strain isolated from 5uyeong Bay. This strain was differentiated from B. cereus group using conventional, API system and fatty acid composition analysis. Colony characteristics were opague. mucoid, entire margin. convex. circular and non hemolysis on sheep blood agar plates, and were observed with central spore forming positive bacilli in a Gram stained preparation. and had no motility. The carbohydrates tested; glucose.maltose, and sucrose were assimilated but neither trehalose nor salicin were assimilated. This strain ultilized gelatin and was also inhibited by 6.5% NaCI. The results of biochemical examination were differented from B. cereus group LS-1 compared with others B. cereus group. The fatty acid composition contained major amounts of branched chain acids. iso $C_{15}$ and iso $C_{13}$ and the range of chain length was $C_{12}$ to C"$C_{17}$ and n$C_{15}$, acid was not detected. Automated fatty acid computer profile indicated "B. mycoides GC subgroup B of 0.312 similarity index." The results agreed with other research cases. On the other hand. A TB computer prolile index of API system (API 50 CHB & API 20E) identified" Doubtful profile of 99.7% B. firmus" . These results were presented with considerable discrepancies between API system and fatty acid analysis. With 67 biochemical characters. the similarity matrix of B. mycaides (KCTC 1033). B. thuringiensis (KCTC 1033). B. cereus (5-3) and B. mycoides (S-12) showed 42%. 42%. 59%, and 52%. respectively. Through the key tests and fatty acid analyses. we could notice the appearance of B. mycoides of the B. cereus group and this leads us to suspect the existence of a new biotype B. mycoides.

  • PDF

PEKK(Polyetherketoneketone) Surface Treatment Effects on Shear Bond Strength to Dental Veneering Resin (PEKK(Polyetherketoneketone) 표면처리가 치과용 베니어 레진의 전단결합강도에 미치는 영향)

  • Moon, Yun-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.93-99
    • /
    • 2019
  • The purpose of this study was to investigate the bond strength between PEKK(Polyetherketoneketone) and Sinfony(3M ESPE, Seefeld, Germany) the dental composite resin by proposing the three representative surface treatment methods and evaluate to see if they affect the bond strength between two materials. A total of 30 PEKK($Pekkton^{(R)}$ Ivory, $Cendres+M{\acute{e}}taux$, Bienne, Switzerland) specimens were prepared, embedded in acrylic resin, polished(P 1200 grid) to surface, and each group was divided into 10 specimens. After then, by the surface treatment method, it classified into three groups(n=10) such as Air abrasion group(PN), applying Single Bond Universal(3M ESPE) after Air abrasion(PB), applying OPAQUE(3M ESPE) after Air abrasion(PO). Then, veneering was performed by using Sinfony(3M ESPE, Seefeld, Germany). All completed specimens were allowed to rest in a $37^{\circ}C$ water bath for 24 hours. Shear bond strength of each group was measured and fracture patterns were classified. Statistic analysis was performed with One-way ANOVA followed by post hoc Scheffe tast (p<.05). Statistical analysis was performed using the SPSSWIN 21.0 program. As a result of one-way ANOVA, the average value of PB group was $27.67{\pm}4,18MPa$ and it was shown as the highest bond strength, PN and PO were $20.43{\pm}1.70$ and $19.8{\pm}4.77MPa$ each, and these were relatively low(F=18.4, P<.001), and as the post-test the Scheffe test was conducted and verified (p<.05). After examining the scheffe test, it was showed significant differences as PB>PO, PB>PN(p<.001). Through this study, in order to enhance the bonding force between PEKK and the composite resin, perform the Air abrasion and surface treatment by using Single Bond Universal(3M ESPE) is recommended, and as coMPared with other studies. And it is assumed that the increase of the application time of the Air abrasion affects the increase of the shear bond strength. Thus, further research is required.