DOI QR코드

DOI QR Code

원주 분극 압전 링 트랜스듀서 해석을 위한 방사 분극 링 유효 물성 도출

Effective material properties of radially poled piezoelectric ring transducer for analysis of tangentially poled piezoelectric ring

  • 이학수 (국방과학연구소 6본부 1부) ;
  • 조치영 (국방과학연구소 6본부 1부) ;
  • 박성철 (국방과학연구소 6본부 1부) ;
  • 조요한 (국방과학연구소 6본부 1부) ;
  • 이정민 (국방과학연구소 6본부 1부)
  • 투고 : 2018.11.08
  • 심사 : 2019.03.26
  • 발행 : 2019.03.31

초록

33-모드 링은 31-모드 링에 비하여 결합상수와 압전상수 d가 높기 때문에 광대역 수중 음향 트랜스듀서로 활용성이 높다. 반면 31-모드 링은 축대칭 구조이므로 수치해석 수행시 2차원 축대칭 모델로 간략히 해석이 가능하지만, 33-모드 링은 3차원 수치해석을 수행해야 한다. 즉, 특성 예측을 위해 많은 전산자원과 계산시간이 소요된다. 따라서 33-모드 링의 전기-기계-음향 응답을 모사할 수 있는 등가의 31-모드 링의 유효 물성을 도출할 수 있다면 소나 트랜스듀서 설계 등에 실용적일 것이다. 본 연구에서는 응답 특성을 모사하기 위해 각 링의 전기, 기계 임피던스 및 변환계수(${\phi}$)가 동일하다고 가정하여 등가 31-모드 링의 유효 밀도(${\rho}_{31_{-}eff}$), 컴플라이언스($s^E_{11_{-}eff}$), 압전 상수($d_{31_{-}eff}$), 유전 상수(${\varepsilon}^T_{33_{-}eff}$)를 유도했다. 도출한 유효 물성을 이용하여 진공상태의 링, 수중에서 공기 배킹의 링, 그리고 수중에서 링 내부에 자유롭게 유체가 드나드는 링에 대하여 수치해석을 하였고 이를 33-모드 링의 응답특성과 비교하였다.

Compared to 31-mode rings, 33-mode rings are highly utilized as wide bandwidth underwater acoustic transducers because the electro-mechanical coupling and piezoelectric constant d are high. On the other hand, the 31-mode ring is an axial symmetry structure, so it is possible to model it as a simple two-dimensional asymmetrical model for numerical analysis, but the 33-mode ring requires a three-dimensional numerical analysis. That is, a lot of computing resources and computation time are required. In this study, the effective material properties of an equivalent 31-mode ring were derived to simulate the electro-mechano-acoustical responses of the 33-mode ring transducer. Using the effective material properties derived from this study, a numerical analysis of rings in vacuum, air backed rings in water, and FFR (Free Flooded Ring) transducers were performed to compare the responses of 33-mode rings.

키워드

GOHHBH_2019_v38n2_184_f0001.png 이미지

Fig. 1. Piezoelectric ring transducer: 31-mode ring, 33-mode ring, inactive segmented 33-mode ring.

GOHHBH_2019_v38n2_184_f0003.png 이미지

Fig. 3. Finite element model of FFR transducer: (a) inactive seg, 33-mode ring with 3D model, (b) equivalent 31-mode ring with 2D axisymmetric model.

GOHHBH_2019_v38n2_184_f0004.png 이미지

Fig. 4. Impedance comparison between 33-mode and equivalent 31-mode ring: ring in air.

GOHHBH_2019_v38n2_184_f0005.png 이미지

Fig. 5. Impedance comparison between inactive segmented 33-mode and equivalent 31-mode ring: ring in air.

GOHHBH_2019_v38n2_184_f0006.png 이미지

Fig. 6. TVR(a) and impedance(b) comparison between 33-mode and equivalent 31-mode ring: air backed ring in water.

GOHHBH_2019_v38n2_184_f0007.png 이미지

Fig. 7. TVR(a) and impedance(b) comparison between inactive segmented 33-mode and equivalent 31-mode ring: air backed ring in water.

GOHHBH_2019_v38n2_184_f0008.png 이미지

Fig. 8. TVR(a) and impedance(b) comparison between 33-mode and equivalent 31-mode ring: free flooded ring transducer.

GOHHBH_2019_v38n2_184_f0009.png 이미지

Fig. 9. TVR(a) and impedance(b) comparison between inactive segmented 33-mode and equivalent 31-mode ring: free flooded ring transducer.

GOHHBH_2019_v38n2_184_f0010.png 이미지

Fig. 10. Difference between 3-dimensional model and lumped parameter model.

GOHHBH_2019_v38n2_184_f0011.png 이미지

Fig. 2. Equivalent circuit of ring transducers: (a) unloaded ring in air, (b) loaded ring with air backing, (c) FFR transducer.[1,3,7]

Table 1. Lumped parameters of each ring transducer.[1,3,8]

GOHHBH_2019_v38n2_184_t0001.png 이미지

Table 2. Effective material properties of 31-mode ring.

GOHHBH_2019_v38n2_184_t0002.png 이미지

Table 3. 33-mode ring design parameters and effective material properties of its equivalent 31-mode ring.[1]

GOHHBH_2019_v38n2_184_t0003.png 이미지

참고문헌

  1. C. H. Sherman and J. L. Butler, Transducers and Arrays for Underwater Sound (Springer, New York, 2007), pp. 81-95, 547-552.
  2. P. Dufourcq, J. Adda, M. Letiche, and E. Sernit, "Transducers for great depths," Proc. Power Transducers for Sonics and Ultrasonics, 75-85 (1991).
  3. S. Yilmaz, Design of 31-mode free-flooded ring transducers, (Master's thesis, Bilkent University, 2008).
  4. K. Been, S. Nam, H. Lee, H. Seo, and W. Moon, "A lumped parameter model of the single free-flooed ring transducer," J. Acoust. Soc. Am. 141, 4740-4755 (2017). https://doi.org/10.1121/1.4986937
  5. T. B. Tay, Numerical modeling of a free-flooded piezoelectric ring sonar transducer, (Master's thesis, Naval Postgraduate School, 1993).
  6. B. Kwon, C. Joh, H. Lee, H. Seo, and Y. Kim, "Efficient numerical analysis method to expect the response of 33-mode free flooded ring transducer", J. Acoust. Soc. Kr. Suppl. 1(s) 34, 154 (2015).
  7. L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics (Wiley, Hamilton, 2000), pp. 390-406.
  8. H. Lee, Study on efficient generation of sound with extraordinary directivity in air, (Ph.D. thesis, POSTECH, 2009).
  9. G. W. McMahon, "Performance of open ferroelectric ceramic cylinders in underwater transducers," J. Acoust. Soc. Am. 36, 528-533 (1964). https://doi.org/10.1121/1.1918994