DOI QR코드

DOI QR Code

A study on the requirement of drone acquisition for the efficient dronebot combat system

효율적 드론봇 전투체계를 위한 드론 편제소요 도출에 관한 연구

  • Cha, Dowan (Department of Weapon System Engineering, Korea Army Academy at Yeongcheon)
  • 차도완 (육군3사관학교 무기시스템공학과)
  • Received : 2019.01.28
  • Accepted : 2019.03.20
  • Published : 2019.03.28

Abstract

In this paper, we propose an approach to get the requirement of drone acquisition for the efficient dronebot combat system using brute force algorithm. We define parameters, such as width, depth, and important surveillance area for the surveillance mission in the Army battalion and company units based on real military operation environment and brute force algorithm with 4 steps including first, next, valid, output is applied to get the requirement of drone acquisition and each drone's path planning using computer simulation. As a result, we could get the requirement of drone acquisition and each drone's path planning, the Army could utilize our proposed approach in the Army dronebot combat system. In the future research, we will study on the reliability of our proposed approach to get the requirement of drone acquisition for the efficient dronebot combat system.

본 논문에서는 현재 육군에서 추진하고 있는 드론봇 전투체계에서 부대단위별 효율적 감시정찰 임무를 수행하기 위한 드론의 편제소요를 도출할 수 있는 방법을 제안한다. 본 논문에서는 육군의 대대 및 중대의 감시정찰 임무와 관련된 정면과 종심, 중요감시지역 수의 문제를 실제 작전환경을 고려하여 가정하였으며 first, next, valid, output 4단계의 Brute Force 알고리즘을 적용한 시뮬레이션을 통하여 대대 및 중대의 감시정찰에 필요한 최소한의 드론 대수를 도출하였고 각각 드론의 경로계획을 수립하였다. 그 결과, 육군의 드론봇 전투체계에서는 본 논문에서 제안한 방법을 적용하여 부대별 임무에 특성에 따라 보다 간단하고 빠르게 임무수행에 필요한 드론의 편제소요를 도출할 수 있을 것이다. 향후에는 본 논문에서 제안한 방법을 이용한 편제소요 도출방안의 신뢰성 검증에 대한 연구를 진행하도록 하겠다.

Keywords

OHHGBW_2019_v10n3_31_f0001.png 이미지

Fig. 1. Surveillance drones used in Vetnam War and Middle East War

OHHGBW_2019_v10n3_31_f0002.png 이미지

Fig. 2. Surveillance drones used after 1980 years

OHHGBW_2019_v10n3_31_f0003.png 이미지

Fig. 3. Real environment for surveillance mission

OHHGBW_2019_v10n3_31_f0004.png 이미지

Fig. 4. Flowchart of Brute Force Algorithm

OHHGBW_2019_v10n3_31_f0005.png 이미지

Fig. 5. Simulation Result for Battalion Unit

OHHGBW_2019_v10n3_31_f0006.png 이미지

Fig. 6. Simulation Result for Company Unit

Table 1. Mission environment for Battalion and Company units.

OHHGBW_2019_v10n3_31_t0001.png 이미지

Table 2. Path planning of each drone for Battalion and Company units.

OHHGBW_2019_v10n3_31_t0002.png 이미지

References

  1. USA Military Defense 2011 UAS Annual Report. http://www.acq.osd.mil/sts/organization/uw.shtml
  2. Doo-hwan Kim & Youn-hwan Lee. (2018). A study on the countermeasures and drones's threats in military security. Journal of Digital Convergence. 16(10). 223-233. https://doi.org/10.14400/JDC.2018.16.6.223
  3. D. W. Cha, J. O. Park, C. H. Son, Y. W. Park & K. W. Kim. (2018). Military Drones and antidrone systems, Military and Technologies. 471. 140-153.
  4. Y. H. Tae, H. S. Ryo & Y. S. Jeong. (2018). Study on measures to introduce drone delivery service for domestic logistics. Journal of Convergence for information technology index. 8(5). 243-249.
  5. J. Y. Kim. (2018). An analysis of the Trends of Future Weapon Systems and Military Science and Technologies, Strategic Studies. 25(3). 79-108.
  6. Dorigo, Marco & Luca Maria Gambardella. (1997). Ant colony system: a cooperative learning approach to the travelling salesman problem. IEEE Transactions on Evolutionary Computation. 1(1). 53-56. https://doi.org/10.1109/4235.585892
  7. M. S. Chung, S. H. Jeong & J. Y. Lee. (2018). Analysis of major research trends in artificial intelligence based on domestic/international patent data. Journal of digital convergence. 16(6). 187-195. https://doi.org/10.14400/JDC.2018.16.6.187
  8. Tavelling Salesman Problem. https://en.wikipedia.org/wiki/Travelling_salesman_problem
  9. C. H. Lim, Luc Brunet & Jonathan P. How. (2009). Consensus-based decentralized autions for robust task allocation. IEEE Transactions on Robotics. 25(4). 912-926 https://doi.org/10.1109/TRO.2009.2022423
  10. C. H. Lee, G. H. Moon, D. W. Yoo, M. J. Tahk & I. S. Lee. (2012). Distributed Task Assignment Algorithm for SEAD Mission of Heterogeneous UAVs Based on CBBA Algorithm. Journal of the Korean Society for Aeronautical & Space Sciences. 40(11). 988-996. https://doi.org/10.5139/JKSAS.2012.40.11.988
  11. Military Terminology. Surveillance. https://terms.naver.com/entry.nhn?docId=2752201&cid=50307&categoryId=50307.
  12. AQM-34 Ryan Firebee Vietam military operation. https://en.wikipedia.org/wiki/Ryan_Firebee
  13. Unmanned Aerial Veihicle. https://ko.wikipedia.org/wiki/%EB%AC%B4%EC%9D%B8_%ED%95%AD%EA%B3%B5%EA%B8%B0.
  14. Q. Paul, J. H. Hyeon, Y. H. Moon & S. W. Ha. (2017). A study on attitude estimation of UAV using image processing. Journal of Convergence for information technology index. 7(5). 137-148.
  15. A. B. Morton, & I. M. Y. Mareels. (2000). An efficient brute force solution to the network reconfiguration problem. IEEE Transactions on Power delivery. 15(3). 996-1000.