Fig. 1. HSV Color Coordinate (a) HSV Cylinder (b) HSV Cone
Fig. 2. Image of gradient direction (a) Original Image (b) Gradient direction
Fig. 3. Margin and Support Vector
Fig. 4. Flowchart of the Proposed Method
Fig. 5. Remove Background(HSV) (a) Original Video (b) Remove background
Fig. 6. Difficult to Distinguish between Objects (a) Remove Background Video (b) Indistinguishable Objects
Fig. 7. Remove Background and Equalization (a) Gray Video and Histogram (b) Equalization Video and Histogram
Fig. 8. Distinct objects of equalization (a) Equalization Video (b) Distinct Objects
Fig. 9. HOG Feature Video (a) HOG Feature of Original Video (b) HOG Feature of Proposed Method
Fig. 10. HOG-SVM Tracking Result (a) HOG Feature Video (b) SVM Tracking Video
Fig. 11. Experiment Results 1 (Walking1) (a) Original Video (b) HOG-SVM Tracking (c) Proposed Method Tracking
Fig. 12. Experiment Results 2 (Jogging2) (a) Original Video(b) HOG-SVM Tracking (c) Proposed Method Tracking
Fig. 13. Experiment Results 3 (Walking2) (a) Original Video(b) HOG-SVM Tracking (c) Proposed Method Tracking
Fig. 14. Experiment Results 4 (Human8, Couple) (a) Original Video (b) HOG-SVM Tracking (c) Proposed Method Tracking
Fig. 15. Experiment Results 5 (David3, Human2, 7) (a) Original Video (b) HOG-SVM Tracking (c) Proposed Method Tracking
Fig. 16. Experiment Results 6 (Human9) (a) Original Video (b) HOG-SVM Tracking (c) Proposed Method Tracking
Table 1. Tracking Processing Speed (FPS, ms)
Table 2. Average for Consecutive Error Tracking Frame
References
- H. Song, Y. Zheng & K. Zhang. (2016). Robust visual tracking via self-similarity learning. Electronics Letters, 53(1), 20-22. DOI : 10.1049/el.2016.3011
- J. Y. Kim. (2015). Method on Detection Specific Region Using License Plate Edge Feature In Car Image. Master dissertation. Kwangwoon University, Seoul.
- J. H. Park. (2017). Improved face detection algorithm using color distribution and shape characteristics. Master dissertation. Kwangwoon University, seoul.
- S. K. Pyo, G. S. Lee, Y. S. Park, S. H. Lee. (2018). A license plate detection method based on contour extraction that adapts to environmental changes. Journal of the Korea Convergence Society, 9(9), 31-39. https://doi.org/10.15207/JKCS.2018.9.9.031
- M. Cen & C. Jung. (2017). Complex Form of Local Orientation Plane for Visual Object Tracking. IEEE Access, 5, 21597-21604. DOI : 10.1109/ACCESS.2017.2756699
- L. Lan, X. Wang, S. Zhang, D. Tao, W. Gao & T. S. Huang. (2018). Interacting Tracklets for Multi-Object Tracking. IEEE Transactions on Image Processing. 27(9). 4585-4597 DOI : 10.1109/TIP.2018.2843129
- R. Yu, I.. Cheng, B. Zhu, S. Bedmutha & A. Basu. (2018). Adaptive Resolution Optimization and Tracklet Reliability Assessment for Efficient Multi-Object Tracking. IEEE Transactions on Circuits and Systems for Video Technology. 28(7). 1623-1633. DOI : 10.1109/TCSVT.2017.2668278
- Q. Xie, O. Remil, Y. Guo, M. Wang, M. Wei & J. Wang. (2018). Object Detection and Tracking Under Occlusion for Object-Level RGB-D Video Segmentation. IEEE Transactions on Multimedia. 20(3). 580-592. DOI : 10.1109/TMM.2017.2751965
- T. H. Yoo, G. S. Lee & S. H. Lee. (2012). Window Production Method based on Low-Frequency Detection for Automatic Object Extraction of GrabCut. Journal of Digital Convergence, 10(8), 211-217 https://doi.org/10.14400/JDPM.2012.10.8.211
- H. H. Han, G. S. Lee, J. Y. Lee & S. H. Lee. (2012). Region Segmentation Technique Based on Active Contour for Object Segmentation, Journal of Digital Convergence, 10(3), 167-172. https://doi.org/10.14400/JDPM.2012.10.3.167
- J. C. Han, B. C. Koo & K. J. Cheoi. (2017). Obstacle Detection and Recognition System for Autonomous Driving Vehicle. Journal of Convergence for Information Technology, 7(6), 229-235. DOI : 10.22156/CS4SMB.2017.7.6.229
- M. K. Kwon & H. S. Yang. (2017). A scene search method based on principal character identification using convolutional neural network. Journal of Convergence for Information Technology, 7(2), 31-36. DOI : 10.22156/CS4SMB.2017.7.2.031
- A. H. Ahmed, K. Kpalma & A. O. Guedi. (2017, December). Human Detection Using HOG-SVM, Mixture of Gaussian and Background Contours Subtraction. In 2017 13th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS) (pp. 334-338). IEEE.
- B. Meus, T. Kryjak & M. Gorgon. (2017, September). Embedded vision system for pedestrian detection based on HOG+SVM and use of motion information implemented in Zynq heterogeneous device. In Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), (pp. 406-411). IEEE.
- J. H. Kim. (2015). A Study on Tracking in Video Using Modified Particle Filter. Master dissertation. Kwangwoon University, Seoul.
- N. Dalal & B. Triggs. (2005, June). Histograms of oriented gradients for human detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on (Vol. 1, pp. 886-893). IEEE.
- C. Cortes, & V. Vapnik. (1995). Support-vector networks. Machine learning, 20(3), 273-297. https://doi.org/10.1007/BF00994018
- J. H. Baek, J. S. Kim & E. T. Kim. (2014, May). Pedestrian detection with NIR sensor-based HOG-SVM. Institude of Control, Robotics and Systems. (pp. 650-651).
- Daimler Mono Ped. Detection Benchmark Data set. http://www.gavrila.net