• Title/Summary/Keyword: Paleoproductivity

Search Result 3, Processing Time 0.019 seconds

Geochemical Evidence for Spatial Paleoproductivity Variations the Northwest Pacific (Shikoku Basin) during the Last Glacial Maximum

  • Hyun, Sang-Min;Ahagon, Naogazu;Saito, Saneatu;Ikehara, Minoru;Oba, TadamichI;Taira, Asahiko
    • Journal of the korean society of oceanography
    • /
    • v.31 no.4
    • /
    • pp.207-216
    • /
    • 1996
  • A geochemical study of three piston cores (ST.4, ST.6 and ST.20) taken from the Northwest Pacific (eastern edge of Shikoku Basin) provides information about changes in surface water paleoproductivity and sedimentation during the last 127 kys. Paleoproductivity variations were estimated on the basis of total organic carbon content and carbonate mass accumulation rate. The paleoproductivity based on total organic carbon shows significant spatial variations between glacial and interglacial periods. During the last glacial maximum (LGM) paleoproductivity increased about 1.5 times with deglaciation decrease compared with those of the Holocene at inner side of the Shikoku Basin (ST.4 and ST.6). On the other hand, paleoproductivity at outer side of Shikoku Basin (ST.20) indicating not distinctive increase but deglaciation increase. The C/N ratios fall below 10 for cores ST.4 and ST.6, but C/N ratios between 100 ka and 80 ka in ST.20 which show around 10 or larger values suggest a predominance of marine organic carbon with some admixture of terrigenous materials. The carbonate mass accumulation rate of three cores show different patterns of calcareous record with respect to organic carbon based paleoproductivity variation. In the inner side of Shikoku Basin (ST.4 and ST.6) the carbonate mass accumulation rate decreased during last glacial maximum, and significant increase of carbonate mass accumulation rate is recognized at outer side of Shikoku Basin (ST.20). Thus, this set of data reveals that spatial paleoproductivity variations between inner and outer side of Shikoku Basin during the glacial and interglacial periods.

  • PDF

Variations of Biogenic Components in the Region off the Lutzow-Holm Bay, East Antarctica during the Last 700 Kyr (지난 70만 년 동안 동남극 Lutzow-Holm만 주변 해역의 생물기원 퇴적물 함량 변화)

  • Kim, Yeo-Hun;Katsuki, Kota;Suganuma, Yusuke;Ikehara, Minoru;Khim, Boo-Keun
    • Ocean and Polar Research
    • /
    • v.33 no.3
    • /
    • pp.211-221
    • /
    • 2011
  • Contents of biogenic components [opal, $CaCO_3$, TOC (total organic carbon)] were measured in Core LHB-3PC sediments collected off Lutzow-Holm Bay, in order to understand glacial-interglacial cyclic variation of the high-latitude surface-water paleoproductivity, in the Indian Sector of the Southern Ocean. An age model was established from the correlation of ARM/IRM ratios of Core LHB-3PC with LR04 stack benthic ${\delta}^{18}O$ records, in complement with radiocarbon isotope ages and biostratigraphic Last Appearance Datum (LAD). The core-bottom age was estimated to be about 700 ka. Although the $CaCO_3$ content is very low less than 1.0% throughout the core, the opal and TOC contents show clear glacial-interglacial cyclic variation such that they are high during the interglacial periods (7.2-50.3% and 0.05-1.00%, respectively) and low during the glacial periods (5.2-25.2% and 0.01-0.68%, respectively). According to the spectral analysis, the variation of opal content is controlled mainly by eccentricity forcing and subsequently by obliquity forcing during the last 700 kyrs. The opal contents of Core LHB-3PC also represent the apparent Mid-Pleistocene Transition (MPT)-related climatic variation in the glacial-interglacial cycles. In particular, the orbital variation of the opal contents shows increasing amplitudes since marine isotope stage (MIS) 11, which defines one of the important paleoclimatic events during the late Quaternary, called the "Mid-Brunhes Event". Based on the variation of the opal contents in Core LHB-3PC, we suggest that the surface-water paleoproductivity in the Indian Sector of the Southern Ocean followed the orbital (glacial-interglacial) cycles, and was controlled mainly by the extent of sea ice distribution during the last 700 kyrs.

High-Resolution Paleoproductivity Change in the Central Region of the Bering Sea Since the Last Glaciation (베링해 중부 지역의 마지막 빙하기 이후 고생산성의 고해상 변화)

  • Kim, Sung-Han;Khim, Boo-Keun;Shin, Hye-Sun;Uchida, Masao;Itaki, Takuya;Ohkushi, Kenichi
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.3
    • /
    • pp.134-144
    • /
    • 2009
  • Paleoproductivity changes in the central part of the Bering Sea since the last glacial period were reconstructed by analyzing opal and total organic carbon (TOC) content and their mass accumulation rate (MAR) in sediment core PC23A. Ages of the sediment were determined by both AMS $^{14}C$ dates using planktonic foraminifera and Last Appearance Datum of radiolaria (L. nipponica sakaii). The core-bottom age was calculated to reach back to 61,000 yr BP. and some of core-top was missing. Opal and TOC contents during the last glacial period varied in a range of 1-10% and 0.2-1.0%, and their average values are 5% and 0.7%, respectively. In contrast, during the last deglaciation, opal and TOC contents varied from 5 to 22% and from 0.8 to 1.2%, respectively, with increasing average values of 8% and 1.0%. Opal and TOC MAR were low ($1gcm^{-2}kyr^{-1}$, $0.2gcm^{-2}kyr^{-1}$) during the last glacial period, but they increased (>5 and >$1gcm^{-2}kyr^{-1}$) during the last deglaciation. High diatom productivity during the last deglaciation was most likely attributed to the elevated nutrient supply to the sea surface resulting from increased melt water input from the nearby land and enhanced Alaskan Stream injection from the south under the restricted sea-ice and warm condition during the rising sea level. On the contrary, low productivity during the last glacial period was mainly due to decreased Alaskan Stream injection during the low sea-level condition as well as to extensive development of sea ice under low-temperature seawater and cold environment.