• Title/Summary/Keyword: Glacial

Search Result 294, Processing Time 0.028 seconds

Westerly Winds in the Southern Ocean During the Last Glacial Maximum Simulated in CCM3

  • Kim, Seong-Joong;Lee, Bang-Yong
    • Ocean and Polar Research
    • /
    • v.31 no.4
    • /
    • pp.297-304
    • /
    • 2009
  • We investigated the response of the westerly winds over the Southern Ocean (SO) to glacial boundary conditions for the Last Glacial Maximum using the CCM3 atmospheric general circulation model. In response to glacial boundary conditions, the zonally averaged maximum SO westerly winds weakened 20-35% and were displaced toward the equator by 3-4 degrees. This weakening of the SO westerly winds arose from a substantial increase in mean sea level pressure (MSLP) in the southern part of the SO around Antarctica relative to the northern part. The increase in MSLP around Antarctica is associated with a marked temperature reduction caused by an increase in sea ice cover and ice albedo feedback during the glacial time. The weakened westerly winds in the SO and their equator-ward displacement might play a role in reducing the atmospheric $CO_2$ concentration by reducing upwelling of the carbon rich deep water during the glacial time.

A Geochemical Boundary in the East Sea (Sea of Japan): Implications for the Paleoclimatic Record

  • Han, Sang-Joon;Hyun, Sang-Min;Huh, Sik;Chun, Jong-Hwa
    • Ocean and Polar Research
    • /
    • v.24 no.2
    • /
    • pp.167-175
    • /
    • 2002
  • Sediment from six piston cores from the East Sea (Sea of Japan) was analyzed for evidence of paleoceanographic changes and paleoclimatic variation. A distinct geochemical boundary is evident in major element concentrations and organic carbon content of most cores near the 10-ka horizon. This distinctive basal Holocene change is interpreted to be largely the result of changing sediment sources, an interpretation supported by TiO_2/Al_2O_3$ ratios. Organic carbon and carbonate contents also differ significantly between the Holocene and glacial intervals. The C/N ratio of organic matter is greater than 10 during the glacial period, but is less than 10 for the Holocene, suggesting that the influx of terrigenous organic matter was more volumetrically important than marine organic matter during glacial times. The chemical index of weathering (CIW) is higher for the Holocene than the glacial interval, and changes markedly at the basal Holocene geochemical boundary. Silt fractions are higher in the glacial interval, suggesting a strong effect of climate on silt particle transportation: terrigenous aluminosilicates and continental organic carbon transport were higher during glacial times than during the Holocene. Differences in sediment composition between the Holocene and glacial period are interpreted to have been climatically induced.

Molecular Characterization of Dissolved Organic Matter Unveils their Complexity, Origin, and Fate in Glacier and Glacial-Fed Streams and Lakes on the Tibetan Plateau

  • Kim, Min Sung;Zhou, Lei;Choi, Mira;Zhang, Yunlin;Zhou, Yongqiang;Jang, Kyoung-Soon
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.192-199
    • /
    • 2021
  • Alpine glaciers harbor a large quantity of bio-labile dissolved organic matter (DOM), which plays a pivotal role in global carbon cycling as glacial-fed streams are headwaters of numerous large rivers. To understand the complexity, origin, and fate of DOM in glaciers and downstream-linked streams and lakes, we elucidated the molecular composition of DOM in two different Tibetan Plateau glaciers, eight glacial-fed streams and five lakes, using an ultrahigh-resolution 15 Tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The compositional changes of the DOM samples revealed that glacier DOM mostly exhibited sulfur-containing organic compounds (CHOS species). We also found that aliphatic formulae contributed more than 50% of the total abundance of assigned molecules in glacier samples, and those compounds were significantly related to CHOS species. The CHO proportions of glacial-fed streams and lakes samples increased with increasing distance from glacial terminals. The relative contribution of terrestrial-derived organics (i.e., lignins and tannins) declined while microbial-originated organics (aliphatics) increased with increasing elevation. This suggested the gradual input of allochthonous materials from non-glacial environment and the degradation of microbe-derived compounds along lower elevations. Alpine glaciers are retreating as a result of climate change and they nourished numerous streams, rivers, and downstream-linked lakes. Therefore, the interpretations of the detailed molecular changes in glacier ice, glacial-fed streams, and alpine lakes on the Tibetan Plateau could provide broad insights for understanding the biogeochemical cycling of glacial DOM and assessing how the nature of DOM impacts fluvial ecosystems.

Is the Baekdudaegan "the Southern Appalachians of the East"? A comparison between these mountain systems, focusing on their role as glacial refugia

  • Chung, Mi Yoon;Lopez-Pujol, Jordi;Chung, Myong Gi
    • Korean Journal of Plant Taxonomy
    • /
    • v.46 no.4
    • /
    • pp.337-347
    • /
    • 2016
  • Based on genetic studies and palaeoecological surveys, the main Korean mountain range, the so-called "Baekdudaegan" (BDDG), has been recently suggested to be a major glacial refugium at the Last Glacial Maximum (LGM) for the boreal and temperate flora of northeastern Asia. On the basis of its shared role as a glacial refugium, and on a series of striking similarities in floristic richness and orographic features, the BDDG would constitute a sort of "eastern counterpart" of the Southern Appalachians. Given its floristic, biogeographic, and cultural value, the BDDG merits high priority for conservation.

Microwave Radiation Characteristics of Glacial Ice in the AMSR-E NASA Team2 Algorithm (AMSR-E NASA Team2 알고리즘에서 빙하빙의 마이크로파 복사특성)

  • Han, Hyang-Sun;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.5
    • /
    • pp.543-553
    • /
    • 2011
  • Sea ice concentration calculated from the AMSR-E onboard Aqua satellite by using NASA Team2 sea ice algorithm has proven to be very accurate over sea ice in Antarctic Ocean. When glacial ice such as icebergs and ice shelves are dominant in an AMSR-E footprint, the accuracy of the ice concentration calculated from NASA Team2 algorithm is not well maintained due to the different microwave characteristics of the glacial ice from sea ice. We extracted the concentrations of sea ice and glacial ice from two ENVISAT ASAR images of George V coast in southern Antarctica, and compared them with NASA Team2 sea ice concentration. The result showed that the NASA Team2 algorithm underestimates the concentration of glacial ice. To interpret the large deviation of estimation over glacial ice, we analyzed the characteristics of microwave radiation of the glacial ice in PR(polarization ratio), GR(spectral gradient ratio), $PR_R$(rotated PR), and ${\Delta}GR$ domain. We found that glacial ice occupies a unique region in the PR, GR, $PR_R$, and ${\Delta}GR$ domain different from other types of ice such as ice type A, B, and C, and open water. This implies that glacial ice can be added as a new category of ice to the AMSR-E NASA Team2 sea ice algorithm.

Sedimentary Excess Barium from a Core of the Northwest Pacific Ocean: Geochemical Proxy

  • Suk, Bong-Chool;Park, Chan-Hong;Taira, Asahiko;Hyun, Sang-Min
    • Journal of the korean society of oceanography
    • /
    • v.35 no.2
    • /
    • pp.98-108
    • /
    • 2000
  • A geochemical study on a hemipelagic core sediment taken from the northwest Pacific Ocean (eastern edge of the Shikoku Basin) was conducted to use of excess barium (Ba(ex)) for evaluate the paleoceano-graphic changes. Also, the excursion of sedimentary Ba(ex) was compared with those of biogenic opal, carbonate and organic carbon content in the sediment during the last glacial and interglacial periods. The calculated Ba(ex) derived from the major and minor element shows a distinctive glacial-interglacial variations, and the mass accumulation rate (MAR) of Ba(ex) shows coincident variations with the MARs of biogenic fractions. Especially, strong positive correlation (r$^2$=0.85) between the MAR of Ba(ex) and the MAR of biogenic carbonate is recognized. Based on the strong positive correlation(r$^2$=0.85) between the MAR of Ba(ex) and the MAR of carbonate content, we estimated the degree of carbonate dissolution rate during the glacial and interglacial periods. Assuming the proportional variation and the refractory nature of barium exist between two factors, the variation of index Ca/Ba ratio in sediment indicates the degree of carbonate dissolution. Sedimentary Ca/Ba ratios index clearly show a striking fluctuation between the glacial and interglacial periods with higher positive correlation during glacial and lower correlation during interglacial. This fact indicates enhanced carbonate dissolution during interglacial period. Thus, the sedimentary Ca/Ba ratio in sedimentary records can be used as one of the useful tools for estimation of the relative degree of carbonate dissolution. The excursion of Ba(ex) and the sedimentary Ca/Ba ratio follows the typical pacific carbonate dissolution type(enhanced dissolution during interglacial and reduced dissolution during glacial time) as suggested by previous work (e.g., Wu et al., 1990). Variation in sedimentary Ca/Ba ratio thus strongly supports that glacial-interglacial fluctuation in carbonate dissolution has been prevailed in the northwest Pacific Ocean.

  • PDF

A Study on the Synthesis of Dipyrrolylbenzenes (Dipyrrolylbenzene들의 합성에 관한 연구)

  • 정대일;변석인;송현애;이도훈;김윤영;이용균;박유미;최순규;한정태
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.836-842
    • /
    • 2003
  • 1-(2-Aminophenyl)pyrrole 5 was synthesized by using 1,2-phenylenediamine with 2,5-dimethoxy-tetrahydrofuran in glacial acetic acid. 1-(3-Aminophenyl)pyrrole 7 and 1,3-dipyrrolylbenzene 8 were obtained by using 1,3-phenylene-diamine with 2,5-dimethoxytetrahydrofuran in glacial acetic acid. 1,4-Dipyrrolylbenzene 10 was synthesized by using 1,4-phenylenediamine with 2,5-dimethoxy-tetrahydrofuran in glacial acetic acid. Aminophenylpyrroles 5, 7 and dipyrrolylbenzenes 8, 10 were respectively synthesized by treatment of 1,2-phenylenediamine, 1,3-phenylenediamine, 1,4-phenylene-diamine and 2,5-dimethoxytetrahydrofuran in (1) no solvent or (2) acrylic acid or (3) silica gel or (4) acrylic acid and silica gel or (5) silica gel and glacial acetic acid instead of glacial acetic acid. The best yield for dipyrrolylbenzene 10 was obtained when silica gel and glacial acetic acid was used. 9-Phenyl-carbazole 11 was synthesized by treatment of 1-phenylpyrrole with 2,5-dimethoxy-tetrahydrofuran in glacial acetic acid.

Weathering durability of biopolymerized shales and glacial tills

  • Amelian, Soroosh;Song, Chung R.;Kim, Yongrak;Lindemann, Mark;Bitar, Layal
    • Geomechanics and Engineering
    • /
    • v.28 no.4
    • /
    • pp.375-384
    • /
    • 2022
  • The glacial tills and shales in Midwestern states of the USA often show strength degradation after construction. They are often in need of applying soil modification techniques to remediate their strength degradation with weathering process. This study investigated the weathering durability of these natural soils and biopolymer treated soils by comparing direct shear test results for wet-dry and wet-freeze-thaw-dry cycled specimens. The tests showed that untreated glacial tills maintained only 62% and 50% initial shear strength after eight wet-dry cycles and eight wet-freeze-thaw-dry cycles, respectively. These untreated soils could not withstand by themselves after 16 weathering cycles. The same soils treated with 1.5% (by dry weight) food-grade Xanthan gum maintained 140% and 88% initial shear strength of untreated soils after 16 weathering cycles for wet-dry cycles and wet-freeze-thaw-dry cycles, respectively. The same soils treated with 1.5% (by dry weight) Gellan gum maintained 82% and 60% initial shear strength of untreated ones after 16 weathering cycles, respectively. Similar results were obtained for crushed shales, manifesting that the biopolymerization method may be adopted as a new eco-friendly method to enhance the weathering durability of these problematic soils of glacial tills and shales.

The Clinical Characteristics and Prognosis after Acute Ingestion of Glacial Acetic Acid (급성 빙초산 음독의 임상 양상 및 예후)

  • Choi, Gab-Yong;Min, Young-Gi;Jung, Yoon-Seok;Cho, Joon-Pil;Choi, Sang-Cheon
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.10 no.2
    • /
    • pp.91-96
    • /
    • 2012
  • Purpose: A retrospective study with a literature review was conducted to identify the clinical characteristics and prognosis after the acute ingestion of glacial acetic acid. Methods: The medical records of 20 patients,who had presented to the emergency department of Ajou University Hospital complaining of the acute ingestion of glacial acetic acid between January 2006 and December 2011, were examined retrospectively. Results: Among the 172 patients admitted for caustics injury, 20 patients ingested glacial acetic acid. The mean age of the patients was $55{\pm}23.5$, and the mean volume of the acid was $84.5{\pm}71.3$ ml. The clinical features included 1) oral ulcers in 12 patients (63.2%), 2) respiratory difficulties in 11 patients (57.9%), 3) oliguria in 8 patients (42.1%), 4) renal toxicity in 7 patients (36.8%), 5) hepatic failure in 7 patients (36.8%), 6) disseminated intravascular boagulopathyin 7 patients (36.8%), 7) low blood pressure in 8 patients (42.1%), and 8) mental changes in 9 patients (47.4%). Ten patients required endotracheal intubation. Nine patients were admitted to the intensive care unit, and 5 patients expired. Conclusion: The ingestion of glacial acetic acid can cause severe symptoms, such as metabolic acidosis, multiple organ failure and upper airway swelling frequently and has a high mortality rate. Therefore, aggressive treatment, including endotracheal intubation, should be considered at the early stages.

  • PDF

Last Glacial Maximum-Holocene Variability in Geochemical Records of a Core Sediment from the Southern Part of the Ulleung Basin, East Sea: Implications for Paleoceanographic Changes (동해 울릉분지 남단 주상퇴적물에 대한 최종빙기-홀로세간의 지화학적 기록 변화: 고해양환경 변화)

  • Huh, Sik;Han, Sang-Joon;Hyun, Sang-Min
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.2
    • /
    • pp.71-80
    • /
    • 2001
  • To understand paleoceanographic environmental changes in the Esat Sea during the transitional period between Holocene and last glacial maximum, geochemical high resolution study was conducted by using a piston core(95PC-1) samples collected from the southernmost part of the Ulleung Basin. Geochemical results reveal that major distinctive paleoceanographic variations in transitional period are prominent. Major elemental concentrations show distinctive variations between glacial and Holocene suggesting changes in sediment supply. $TiO_2/Al_2O_3$ ratio of the sediment indicates different sediment composition between Holocene and glacial period. The content of total organic carbon ranging from 0.5% to 4% during transitional period. These vslues showed 2-4 times and two times higher than those of last glacial and Holocene, respectively. The C/N ratios deduced from organic matters exceed10 during transitional period suggesting terrigenous organic matter are supplied from continent, especially during last glacial maximum. Carbonate contents are relatively stable during Holocene and last glacial maximum with gradual decrease during glacial period with high fluctuation during transitional period. The variations of chemical index of weathering (CIW) also show a distinctive variation between glacial and Holocene, which is coincident with those of carbonate and organic carbon. The grain size distribution indicates that the difference content of silt fraction during Holocene and glacial period is closely related with climatic effect during glacial period. Therefore geochemical differences in sediment composition between Holocene and last glacial maximum is thought to be related to paleoceanographic, sea-level change and local paleoclimatic changes.

  • PDF