• Title/Summary/Keyword: Deglacial

Search Result 9, Processing Time 0.022 seconds

Variation of Calcium Carbonate Content and Dansgaard-Oeschger Events in the Continental Slope of the Central Bering Sea during the Last 65 Kyr (베링해 중부 대륙사면 지역의 지난 65,000년 동안 탄산염 함량 변화와 Dansgaard-Oeschger 사건들)

  • Kim, Sung-Han;Khim, Boo-Keun;Itaki, Takuya;Shin, Hye-Sun
    • Ocean and Polar Research
    • /
    • v.30 no.3
    • /
    • pp.215-224
    • /
    • 2008
  • A piston core (MR06-04 PC23A) collected from the northern continental slope in the central Bering Sea has recorded the high-resolution millennial-scale variation of calcium carbonate ($CaCO3$) content during the last 65 kyr. An estimation of the age of the core sediments was carried out by using the lithologic correlation of the deglacial laminated layers with a neighboring core (HLY02023JPC), complementing the last appearance datum of both Lychnocanoma nipponica sakaii (54 kyr) and Amphimelissa setosa (85 kyr). The probable age of core MR06-04 PC23A was approximately younger than 65 kyr. Two distinct events of a significant increase of $CaCO3$ in the deglacial laminated sediments clearly correspond to MWP1A and MWP1B in the Bering Sea (Gorbarenko et al. 2005) and to T1ANP and T1BNP in the North Pacific (Gorbarenko 1996). These pronounced peaks of $CaCO3$ contents result from the elevated carbonate production in the surface water and the subsequent weakened dilution due to terrestrial input, along with an enhanced oxygen minimum zone. The $CaCO3$ contents are low (${\sim}2%$) during the last glacial period mainly because of a low carbonate production caused by an expanded sea-ice cover and an increased dilution by terrigenous particles due to their closer distance to the continent during the sea-level low stand. The occurrence of seven distinct $CaCO3$ peaks in core MR06-04 PC23A is remarkable during MIS 3 and MIS 4, and they most likely correlate to the short-term millennial Dansgaard-Oeschger events.

Local Seismic Activity around the Lützow-Holm Bay, East Antarctica

  • Kaminuma, Katsutada;Kanao, Masaki
    • Ocean and Polar Research
    • /
    • v.26 no.3
    • /
    • pp.523-529
    • /
    • 2004
  • The seismic monitoring at Syowa Station$(69^{\circ}S,\;39^{\circ}E: SYO)$, located on the continental margin of the Eastern Dronning Maud Land, East Antarctica, began in 1959. Phase readings of the earthquakes have been reported since 1967 and have been annually published as part of the Data Report Series of the National Institute of Polar Research since 1968. An observation of a tripartite seismic network was carried out at SYO for a period of three years from 1987 to 1990. Epicenters of local earthquakes were determined for the first time by using the array network for the three-year period. Many different types of earthquakes, such as the mainshock-aftershock type, twin earthquake, earthquake swarms, etc., were detected during the period. After this, local events around SYO have been detected empirically from their waveforms recorded on seismograms. The seismic activity for the period of 1987-1990 was higher than that of the following decade. Earthquake epicenters, occurring during that period, were highly localized along the coast and in the central part of the $L\"{u}tzow-Holm$ Bay (LHB). Nine local earthquakes, recorded during the period of 1990-1996, showed many different types of events. The seismicity for the period of 1990-1996 was very low and the magnitudes ranged from 0.1 to 1.4. The locations of some events were determined by using the single station method for SYO, i.e., using the particle motions of the initial phase and S-P time. Two local events were detected in 1998 and one event in 2001. It would be estimated that the stress concentration was related to the glacial rebound around the LHB. Afterwards, we will be able to eventually examine the relationship between the seismicity around Antarctica and deglacial phenomena such as crustal uplift, and sea level change within the earth environmental system.

Diversity and Ecological Importance of Foliicolous Lichens in Korea

  • Oh, Soon-Ok
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.05a
    • /
    • pp.49-49
    • /
    • 2014
  • South Korea is covered primarily by temperate vegetation; therefore, foliicolous lichens may not be expected to play an important role in its lichen flora. Indeed, more than 100 years after the first lichen record from South Korea reported by Hue, the paper "Pyrenocarpous lichens in Korea" published by Moon and Aptroot, reported on the presence of two foliicolous lichens, Strigula nemathora Mont, and S. smaragdula Fr., for the first time in South Korea. No detailed reports on foliicolous lichens have since been published in South Korea. In Japan, the neighboring country, approximately 83 foliicolous lichen species are distributed at the southernmost part under temperate to subtropical climatic conditions. However, a large number of foliicolous lichens, with many recent records, have been reported in neighboring countries like China and Taiwan. According to Thor et al., studies on foliicolous lichen flora of Asia are comparatively poor compared to those reported from America. There are six lichenogeographical regions: the Neotropics, Valdivia, Tethyan, African Paleotropics, eastern Paleotropics, and Neozelandic-Tasmanian, which are demarcated based on the known worldwide distribution pattern of foliicolous lichen flora. South Korea belongs to the eastern paleotropic region, where a higher number of local endemic foliicolous lichens have been reported. So far, there are a total of six known foliicolous lichen taxa from South Korea; S. concreta, S. macrocarpa, S. melanobapha, S. nemathora, S. smaragdula, and S. subelegans from Jeju Island. So far, the genus Strigula is the only known representative of the foliicolous lichen flora in South Korea. Among the recorded species, S. concreta, S. smaragdula, and S. subelegans are abundant and widespread. Japan, the closest area to Jeju Island, has the same distribution pattern of foliicolous lichens, with S. smaragdula, S. melanobapha, and S. subtilissima. Pollen studies conducted by Chung reported that changes in vegetation on Jeju Island, due mainly to deglacial warming and the influence of geographical change, resulted from sea-level rises. In general, all of the foliicolous lichens observed so far were restricted to the southernmost part of South Korea, particularly Jeju Island. Island might be influenced by its geographical setting. One reason could be the close dispersal distances of spores and vegetative propagules from areas such as the southern part of Japan and eastern part of China, where more foliicolous lichens can be found. Thor et al. also showed that the southern part of Japan harbors more foliicolous lichens than the northern part. Considering that China is close to Jeju Island, many foliicolous lichens, including S. concreta, S. macrocarpa, S. nemanthora, and S. smaragdula, have been reported from Yunnan province, the southernmost part of China. Geographically, this province is far away from Jeju Island. In other provinces, such as Shandong, Jiangsu, Shanghai, and Zhejiang, which are closer to Jeju Island, no foliicolous lichens have been recorded so far. Therefore, the chance of spores and propagules coming from such closer areas is questionable. Thus, the location of origin of ancestors of foliicolous lichens of South Korea and the time and means of their invasion of this island is controverisial. The current study would lead the way to finding answers to the above mentioned questions.

  • PDF

Changes of Clay Mineral Assemblages in the Northern Part of the Aleutian Basin in the Bering Sea during the Last Glacial Period (마지막 빙하기 동안 베링해 알류샨 분지 북부 지역의 점토광물 조성 변화)

  • Kim, Sung-Han;Cho, Hyen-Goo;Khim, Boo-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.19-29
    • /
    • 2011
  • Clay mineral assemblages of core PC25A collected from the northern part of the Aleutian Basin in the Bering Sea were examined in order to investigate changes in sediment provenances and transport pathways. Ages of core PC25A were determined by both Last Appearance Datum of radiolaria (L. nipponica sakaii; $48.6{\pm}2\; ka$) and age control points obtained by the correlations of $a^{\ast},\; b^{\ast}$, and laminated sediment layers with the adjacent core PC23A, whose ages are well constrained. The corebottom age of core PC25A was calculated to be about 57,600 yr ago and core-top might be missing during coring execution. Average contents of smectite, illite, kaolinite, and chlorite during the last glacial period are 11% (5~24%), 47% (36~58%), 13% (9~19%), and 29% (21~40%), respectively. Clay mineral assemblages of the last glacial period are characterized by higher illite and lower smectite contents than those of core MC24 representing the modern values. Illite-rich clay sediments during the warm Early Holocene were transported from the northern part of Alaska continent (Province 1) through the ice-melt waters. During the deglacial period (B${\phi}$lling-All${\phi}$rod) of MIS 2, clay-sized particles seemed to be also transported by ice-melt waters mainly from Province 2 and Province 3 located farther south than Province 1. Higher smectite content during the Last Glacial Maximum is attributed to increased amounts of clay particles from the adjacent Alaska Peninsula (Province 4). From the early to the middle MIS 3, illite and smectite contents decreased, whereas chlorite content increased. With the low sea level standing during MIS 3 the supply of clay sediments from Province 2 and Province 3 was most likely intensified. Changes in clay mineral assemblages of core PC25A located in the northern part of the Aleutian Basin in the Bering Sea are closely related to the change of surface current system caused by sea level variation during the last glacial period.

Geochemical Characteristics and Quaternary Environmental Change of Unconsolidated Sediments from the Seokgwan-dong Paleolithic Site in Seoul, Korea (서울 석관동 유적의 미고결 퇴적층의 지구화학적 특성 및 제4기 지표환경변화)

  • Lee, Hyo-Min;Lee, Jin-Young;Kim, Ju-Yong;Hong, Sei-Sun;Park, Jun-Bum
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.373-388
    • /
    • 2016
  • To understand human activity in the past, the information about past environmental change including geomorphological and climatic conditions is essential and this can be traced by using age dating and geochemical analysis of sediments from the prehistoric sites. The sedimentary sequence of Seokgwan-dong Paleolithic Site located in Seoul was 5m long unconsolidated sediments and consists of lower part bedrock weathering sediments, slope deposits and upper-part fluvial deposits. In this study, upper part sediments were used to reconstruct past environmental change through age dating and various physical and chemical analyses including grain size, magnetic susceptibility and mineral and elements. The fluvial sediments can be divided into 4 units including three organic layers. Grain size analysis results showed that the sediments were very poorly sorted with fining upward features. Magnetic susceptibility was relatively high in the organic layers, indicating environmental changes causing mineral composition change at that times. The mineral and major element composition are similar to Jurassic biotite granite which mainly consists of quartz, K-feldspar, biotite and muscovite. The radiocarbon age of $14,240{\pm}80yr$ BP was obtained from the lower most organic layer of Unit III(O), suggesting that the fluvial sediments formed at least from the early stage of deglacial period after the end of Last Glacial Maximum. Subsequent wet and warm climates and resultant fluvial process including slope sedimentation during the Holocene may have been responsible for the sedimentary sequence in Seokgwan-dong paleolithic site and surrounding area. The observed organic layers suggests frequent wetland occurrence combined with natural levee changes in this area.

Origin of Clay Minerals of Core RS14-GC2 in the Continental Slope to the East of the Pennell-Iselin Bank in the Ross Sea, Antarctica (남극 로스해 펜넬-이젤린 퇴 동쪽 대륙사면의 코어 RS14-GC2의 점토광물의 기원지 연구)

  • Ha, Sangbeom;Khim, Boo-Keun;Cho, Hyen Goo;Colizza, Ester
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • A gravity core (RS14-C2) was collected at site RS14-C2 in the continental slope to the east of Pennell-Isellin Bank of the Ross Sea (Antarctica) during PNRA XXIX (Rosslope II Project) Expedition. In order to trace the sediment source, magnetic susceptibility (MS), sand fraction, and clay mineral compositions were analyzed, and AMS $^{14}C$ ages were dated. Core sediments consist mostly of hemipelagic sandy clay or silty clay including ice-rafted debris (IRD). AMS $^{14}C$ age of core-top indicates the modern and Holocene sediments. Based on AMS $^{14}C$ dating, sediment color, MS and sand fraction, core sediments are divided into interglacial and glacial intervals. The interglacial brown sediments are characterized by low MS and sand fraction, whereas the glacial gray sediments are characterized by high MS and sand fraction. Among clay mineral compositions of core sediments, illite is highest (61.8~76.7%), and chlorite (15.7~21.3%), kaolinite (3.6~15.4%), and smectite (0.9~5.1%) are in decreasing order, and these compositions are also divided into the interglacial and glacial/deglacial intervals. During the glacial period, the high content of illite and chlorite indicate sediment supply from the bedrocks of Transantarctic Mountains under the Ross Ice Sheet. In contrast, because of decreasing supply of illite and chlorite by the glacial retreat, smectite and kaolinite contents increased relatively during the interglacial period. During the interglacial period, smectite may be transported additionally by the northeastward flowing surface current from the coast of Victoria Land in the western Ross Sea. Kaolinite may be also supplied to the continental slope by the Antarctic Slope Current from the kaolin-rich metasedimentary rock outcropped on the Edward VII Peninsula.

Sediment Provenance using Clay Mineral in the Continental Shelf and Rise of the Eastern Bellingshausen Sea, Antarctica (벨링스하우젠 해의 동쪽 대륙붕과 대륙대의 코어의 점토광물을 이용한 기원지 연구)

  • Park, Young Kyu;Jung, Jaewoo;Lee, Kee-Hwan;Lee, Minkyung;Kim, Sunghan;Yoo, Kyu-Cheul;Lee, Jaeil;Kim, Jinwook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.173-184
    • /
    • 2019
  • Variations in grain size distribution and clay mineral assemblage are closely related to the sedimentary facies that reflect depositional conditions during the glacial and interglacial periods. Gravity cores BS17-GC15 and BS17-GC04 were collected from the continental shelf and rise in the eastern Bellingshausen Sea during a cruise of the ANA07D Cruise Expedition by the Korea Polar Research Institute in 2017. Core sediments in BS17-GC15 consisted of subglacial diamicton, gravelly muddy sand, and bioturbated diatom-bearing mud from the bottom to the top sediments. Core sediments in BS17-GC04 comprised silty mud with turbidites, brownish structureless mud, laminated mud, and brownish silty bioturbated diatom-bearing mud from the bottom to the top sediments. The clay mineral assemblages in the two core sediments mainly consisted of smectite, chlorite, illite, and kaolinite. The clay mineral contents in core GC15 showed a variation in illite from 28.4 % to 44.5 % in down-core changes. Smectite contents varied from 31.1 % in the glacial period to 20 % in the deglacial period and 25.1 % in the interglacial period. Chlorite and kaolinite contents decreased from 40.5 % in the glacial period to 30.3 % in the interglacial period. The high contents of illite and chlorite indicated a terrigenous detritus supply from the bedrocks of the Antarctic Peninsula. Core GC04 from the continental rise showed a decrease in the average smectite content from 47.2 % in the glacial period to 20.6 % in the interglacial period, while the illite contents increased from the 21.3 % to 43.2 % from the glacial to the interglacial period. The high smectite contents in core GC04 during the glacial period may be supplied from Peter I Island, which has a known smectite-rich sediment contributed by Antarctic Circumpolar Currents. Conversely, the decrease in smectite and increase in chlorite and illite contents during the interglacial period was likely caused by a higher supply of chlorite- and illite-enriched sediment from the eastern Bellingshausen Sea shelf by the southwestward flowing contour current.

Provenance of the Sediments of the Araon Mound in the Chukchi Sea, Arctic Ocean (북극 척치해 아라온 마운드 퇴적물의 기원지에 관한 연구)

  • Jang, JeongKyu;Koo, HyoJin;Cho, HyenGoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.1
    • /
    • pp.15-29
    • /
    • 2021
  • In the Arctic Ocean, the distribution of sea ice and ice sheets changes as climate changes. Because the distribution of ice cover influences the mineral composition of marine sediments, studying marine sediments transported by sea ice or iceberg is very important to understand the global climate change. This study analyzes marine sediment samples collected from the Arctic Ocean and infers the provenance of the sediments to reconstruct the paleoenvironment changes of the western Arctic. The analyzed samples include four gravity cores collected from the Araon mound in the Chukchi Plateau and one gravity core collected from the slope between the Araon mounds. The core sediments were brown, gray, and greenish gray, each of which corresponds to the characteristic color of sediments deposited during the interglacial/glacial cycle in the western Arctic Ocean. We divide the core sediments into three units based on the analysis of bulk mineral composition, clay mineral composition, and Ice Rafted Debris (IRD) as well as comparison with previous study results. Unit 3 sediments, deposited during the last glacial maximum, were transported by sea ice and currents after the sediments of the Kolyma and Indigirka Rivers were deposited on the continental shelf of the East Siberian Sea. Unit 2 sediments, deposited during the deglacial period, were from the Kolyma and Indigirka Rivers flowing into the East Siberian Sea as well as from the Mackenzie River and the Canadian Archipelago flowing into the Beaufort Sea. Unit 2 sediments also contained an extensive amount of IRD, which originated from the melted Laurentide Ice Sheet. During the interglacial stage, fine-grained sediments of Unit 1 were transported by sea ice and currents from Northern Canada and the East Siberian Sea, but coarse-grained sediments were derived by sea ice from the Canadian Archipelago.

High-Resolution Paleoproductivity Change in the Central Region of the Bering Sea Since the Last Glaciation (베링해 중부 지역의 마지막 빙하기 이후 고생산성의 고해상 변화)

  • Kim, Sung-Han;Khim, Boo-Keun;Shin, Hye-Sun;Uchida, Masao;Itaki, Takuya;Ohkushi, Kenichi
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.3
    • /
    • pp.134-144
    • /
    • 2009
  • Paleoproductivity changes in the central part of the Bering Sea since the last glacial period were reconstructed by analyzing opal and total organic carbon (TOC) content and their mass accumulation rate (MAR) in sediment core PC23A. Ages of the sediment were determined by both AMS $^{14}C$ dates using planktonic foraminifera and Last Appearance Datum of radiolaria (L. nipponica sakaii). The core-bottom age was calculated to reach back to 61,000 yr BP. and some of core-top was missing. Opal and TOC contents during the last glacial period varied in a range of 1-10% and 0.2-1.0%, and their average values are 5% and 0.7%, respectively. In contrast, during the last deglaciation, opal and TOC contents varied from 5 to 22% and from 0.8 to 1.2%, respectively, with increasing average values of 8% and 1.0%. Opal and TOC MAR were low ($1gcm^{-2}kyr^{-1}$, $0.2gcm^{-2}kyr^{-1}$) during the last glacial period, but they increased (>5 and >$1gcm^{-2}kyr^{-1}$) during the last deglaciation. High diatom productivity during the last deglaciation was most likely attributed to the elevated nutrient supply to the sea surface resulting from increased melt water input from the nearby land and enhanced Alaskan Stream injection from the south under the restricted sea-ice and warm condition during the rising sea level. On the contrary, low productivity during the last glacial period was mainly due to decreased Alaskan Stream injection during the low sea-level condition as well as to extensive development of sea ice under low-temperature seawater and cold environment.