• Title/Summary/Keyword: zinc-transporter

Search Result 28, Processing Time 0.026 seconds

Toxicological Relevance of Transporters

  • Maeng, Han-Joo;Chung, Suk-Jae
    • Toxicological Research
    • /
    • v.23 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • Transporters are membrane proteins that mediate the transfer of substrate across the cellular membrane. In this overview, the characteristics and the toxicological relevance were discussed for various types of transporters. For drug transporters, the overview focused on ATP-binding cassette transporters and solute carrier family 21A/22A member transporters. Except for OCTN transporters and OATP transporters, drug transporters tend to have broad substrate specificity, suggesting drug-drug interaction at the level of transport processes (e.g., interaction between methotrexate and non-steroidal anti-inflammatory agents) is likely. For metal transporters, transporters for zinc, copper and multiple metals were discussed in this overview. These metal transporters have comparatively narrow substrate specificity, except for multiple metal transporters, suggesting that inter-substrate interaction at the level of transport is less likely. In contrast, the expressions of the transporters are often regulated by their substrates, suggesting cellular adaptation mechanism exists for these transporters. The drug-drug interactions in drug transporters and the cellular adaptation mechanisms for metal transporters are likely to lead to alterations in pharmacokinetics and cellular metal homeostasis, which may be linked to the development of toxicity. Therefore, the transporter-mediated alterations may have toxicological relevance.

Regulatory Role of Zinc in Immune Cell Signaling

  • Kim, Bonah;Lee, Won-Woo
    • Molecules and Cells
    • /
    • v.44 no.5
    • /
    • pp.335-341
    • /
    • 2021
  • Zinc is an essential micronutrient with crucial roles in multiple facets of biological processes. Dysregulated zinc homeostasis impairs overall immune function and resultantly increases susceptibility to infection. Clinically, zinc supplementation is practiced for treatment of several infectious diseases, such as diarrhea and malaria. Recent focus on zinc as a beneficial element for immune system support has resulted in investigation of the immunomodulatory roles of zinc in a variety of immune cells. Besides its classical role as a cofactor that regulates the structural function of thousands of proteins, accumulating evidence suggests that zinc also acts, in a manner similar to calcium, as an ionic regulator of immune responses via participation as an intracellular messenger in signaling pathways. In this review, we focus on the role of zinc as a signaling molecule in major pathways such as those downstream of Toll-like receptors-, T cell receptor-, and cytokine-mediated signal transduction that regulate the activity and function of monocytes/macrophages and T cells, principal players in the innate and adaptive immune systems.

Characterization of a Monosaccharide Transporter mstB Isolated as a Downstream Gene of MsnA in Aspergillus nidulans (Aspergillus nidulans에서 MsnA 하위 유전자로 선별된 단당류 수송자 mstB의 기능 분석)

  • Jeon, Mee-Hyang;Chae, Suhn-Kee
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.281-288
    • /
    • 2011
  • To screen downstream genes of Aspergillus nidulans MsnA showing amino acid sequence similarity to the zinc finger region of Msn2/4 stress response transcription factors in Saccharomyces cerevisiae, differentially expressed genes (DEG) in MsnA overexpressed or msnA null mutant strains compared to wild type have been isolated. The cognate gene IDs were identified by DNA sequencing of the selected DEGs. Among those, DEG6 was known as mstB encoding a putative monosaccharide transporter. Expression level of mstB mRNA was increased in MsnA overproducing strains and MsnA bound directly to the promoter region of mstB in vitro. MstB containing twelve transmembrane domains exhibited 80% of amino acid sequence identities to A. niger MstA a high-affinity monosaccharide transporter. A null mutant of mstB was phenotypically undistinguishable to wild type. On the other hand, forced overexpression of MstB caused the increased formation of sexual structure cleistothecia in 0.1% glucose condition where wild type showed almost no cleistothecia. This result implies that mstB is involved in transport of monosaccharide required for sexual differentiation.

Enhancing effect of Panax ginseng on Zip4-mediated zinc influx into the cytosol

  • Ikeda, Yoshito;Munekane, Masayuki;Yamada, Yasuyuki;Kawakami, Mizuki;Amano, Ikuko;Sano, Kohei;Mukai, Takahiro;Kambe, Taiho;Shitan, Nobukazu
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.248-254
    • /
    • 2022
  • Background: Zinc homeostasis is essential for human health and is regulated by several zinc transporters including ZIP and ZnT. ZIP4 is expressed in the small intestine and is important for zinc absorption from the diet. We investigated in the present study the effects of Panax ginseng (P. ginseng) extract on modulating Zip4 expression and cellular zinc levels in mouse Hepa cells. Methods: Hepa cells were transfected with a luciferase reporter plasmid that contains metal-responsive elements, incubated with P. ginseng extract, and luciferase activity was measured. Using 65ZnCl2, zinc uptake in P. ginseng-treated cells was measured. The expression of Zip4 mRNA and protein in Hepa cells was also investigated. Finally, using a luciferase reporter assay system, the effects of several ginsenosides were monitored. Results: The luciferase activity in cells incubated with P. ginseng extract was significantly higher than that of control cells cultured in normal medium. Hepa cells treated with P. ginseng extract exhibited higher zinc uptake. P. ginseng extract induced Zip4 mRNA expression, which resulted in an enhancement of Zip4 protein expression. Furthermore, some ginsenosides, such as ginsenoside Rc and Re, enhanced luciferase activity driven by intracellular zinc levels. Conclusion: P. ginseng extract induced Zip4 expression at the mRNA and protein level and resulted in higher zinc uptake in Hepa cells. Some ginsenosides facilitated zinc influx. On the basis of these results, we suggest a novel effect of P. ginseng on Zip4-mediated zinc influx, which may provide a new strategy for preventing zinc deficiency.

Cadmium Altered Gene Expression Related to Zinc Homeostasis in the Mouse Brain (카드뮴이 마우스 뇌에서 아연의 항상성에 관여하는 유전자발현에 미치는 영향)

  • Park Jong-An;Yoe Eun-Young;Nam Sang-Hun;Jang Bong-Ki;Lee Jong-Wha;Kim Wan-Jong
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.4
    • /
    • pp.389-399
    • /
    • 2004
  • Metallothionein (MT), a small protein molecule which can bind or release metal ions, is involved in the regulation of cellular metal homeostasis. This study was investigated the accumulation of cadmium in blood, tissue (liver, kidney and brain), and the effect of cadmium on several key genes (MT-I, MT-II, ZnT-1) in zinc metabolism in the mouse. Mouses weighing 20∼25 g were randomly assigned to control and cadmium treated group (Cd group). Cd group was intraperitoneally injected with cadmium 2, 4, 8 mg/kg and control group was administerd with saline. Mouses of each group were sacrificed by decapitation 4 hours after the administration of cadmium. Cadmium contents in blood, liver, kidney and brain were increased by a dose-dependent manner. Accumulation of cadmium was mainly occurred in liver and kidney. Induction of MT-I and MT-II protein was increased, but ZnT-1 expression was decreased in a dose-dependent manner by the treatment of 2∼8 mg/kg cadmium. These results suggested that cadmium can be transported to brain and alter the expression of several key genes in zinc homeostasis.

Toxicometallomics of Cadmium, Manganese and Arsenic with Special Reference to the Roles of Metal Transporters

  • Himeno, Seiichiro;Sumi, Daigo;Fujishiro, Hitomi
    • Toxicological Research
    • /
    • v.35 no.4
    • /
    • pp.311-317
    • /
    • 2019
  • The transport systems for metals play crucial roles in both the physiological functions of essential metals and the toxic effects of hazardous metals in mammals and plants. In mammalian cells, Zn transporters such as ZIP8 and ZIP14 have been found to function as the transporters for Mn(II) and Cd(II), contributing to the maintenance of Mn homeostasis and metallothionein-independent transports of Cd, respectively. In rice, the Mn transporter OsNramp5 expressed in the root is used for the uptake of Cd from the soil. Japan began to cultivate OsNramp5 mutant rice, which was found to accumulate little Cd, to prevent Cd accumulation. Inorganic trivalent arsenic (As(III)) is absorbed into mammalian cells via aquaglyceroporin, a water and glycerol channel. The ortholog of aquaporin in rice, OsLsi1, was found to be an Si transporter expressed in rice root, and is responsible for the absorption of soil As(III) into the root. Since rice is a hyperaccumulator of Si, higher amounts of As(III) are incorporated into rice compared to other plants. Thus, the transporters of essential metals are also utilized to incorporate toxic metals in both mammals and plants, and understanding the mechanisms of metal transports is important for the development of mitigation strategies against food contamination.

Detection Methods of Histochemically-reactive Zinc in the CNS at the Light Microscopical Level (중추신경계통 내 분포하는 zinc 이온의 조직화학적 동정법 비교: I. 광학현미경수준에서)

  • Kim, Yi-Suk;Kim, Sang-Hyun;Lee, Beob-Yi;Lee, Hyun-Sook;Kim, Sung-Joo;Jo, Seung-Mook
    • Applied Microscopy
    • /
    • v.38 no.1
    • /
    • pp.29-34
    • /
    • 2008
  • Small amounts of zinc ions regulate a plentitude of enzymatic proteins, receptors and transcription factors, thus cells need accurate homeostasis of zinc ions. Some neurons have developed mechanisms to accumulate zinc in specific membrane compartment ("vesicular zinc"), which can be evidenced using histochemical techniques. These neurons are the socalled zinc enriched (ZEN) neurons, which accumulate glutamate and zinc inside their synaptic vesicles and release it during synaptic transmission. In the present paper we have studied the distribution of the ZEN terminals in the rat hippo-campus using ZnSe autometallography, Neo-Timm staining, ZnT3 immunohistochemistry and TSQ fluorescence staining.

Ultrastructural Localization of ZnT3 and Zinc Ions in the Mouse Choroid Plexus (생쥐 맥락얼기에 분포하는 ZnT3 및 zinc 이온의 조직화학적 동정)

  • Kim, Sung-Joo;Kim, Yong-Kuk;Sun, Yuan-Jie;Kim, Soo-Jin;Jeong, Young-Gil;Yu, Yun-Cho;Jo, Seung-Mook
    • Applied Microscopy
    • /
    • v.32 no.4
    • /
    • pp.377-383
    • /
    • 2002
  • We have detected the murine zinc transporter, ZnT3, and zinc ions in the mouse choroid plexus by immunocytochemistry (ICC) and zinc selenium autometallography ($ZnSe^{AMG}$), respectively. BALB/c mice served as experimental animals. Routine floating ABC immunocytochemical procedures were used for the ZnT3 immunocytochemistry, and the mice were injected intraperitoneally (i.p.) with sodium selenide (10 mg/kg) for the zinc selenium autometallography. The choroid plexus showed weak immunoreactivity (Ir) for ZnT3. At high magnification, ZnT3-Ir was seen to be located in the choroid epithelium and the connective tissue of the capillaries. At the EM level, a high electron density of ZnT3-immunoreactivity was restricted to vesicle membranes as well as microvilli in the apical membrane. In contrast, immunostaining of ZnT3 was completely absent in the basolateral plasma membrane and other cell organelles. After silver enhancement, fine $ZnSe^{AMG}$ grains were observed in both the epithelial and endothelial cells of the choroid plexus. Few $ZnSe^{AMG}$ grains present in the cell bodies of the choroid epithelial cells were located in multivesicular bodies. It is striking that very many $ZnSe^{AMG}$ grains were observed in the endothelial cells of the capillaries. These findings establish the choroid plexus as a non-neuronal pool of zinc ions in the brain, although the functional significance of this pool is not clear. The choroid epithelium, however, may play an important role in the transportation of zinc between the CSF and brain tissue.

Dietary effects of sophorolipids on nutrient bioavailability and intestinal microenvironments in broiler chickens

  • Min-Jin, Kwak;Min Young, Park;Ki-Peum, Sung;Hanbae, Lee;Kwang-Youn, Whang;Younghoon, Kim
    • Journal of Animal Science and Technology
    • /
    • v.64 no.6
    • /
    • pp.1092-1104
    • /
    • 2022
  • Using antibiotics as growth promoter has been banned in poultry feed industry, thus various researchers try to seek an alternative to replace the growth-promoting antibiotics. In this study, we aimed to evaluate the growth performance via intestinal nutrient utilization and cecal microbial composition of broiler after dietary supplementation with most commonly using antibiotics, zinc bacitracin, and sophorolipid. A total of 180 1-day-old chicks were randomly assigned, and dietary treatment was as follow: CON, basal diet; ZB, 100 ppm of zinc bacitracin supplemented diet; and SPL, 250 ppm of sophorolipid supplemented diet. Their growth performance was evaluated and the samples of blood, small intestine, and ileal and cecal digesta were collected for biochemical, histological, and genomic analyses. The body weight and average daily gain of 7-day-old chicks were higher in ZB and those in overall experimental period were improved by ZB and SPL supplementation (p < 0.05). Their intestinal characteristics were not affected by dietary treatments in duodenum and ileum. Nonetheless, villus height was increased by SPL supplementation in jejunum (p < 0.05). Moreover, dietary SPL supplementation could down-regulate the expression level of pro-inflammatory cytokine, IL-1β (p < 0.05). mRNA levels of lipid and protein transporters did not differ among the treatments, however, relative expression levels of carbohydrate transporters, GLUT2 and SGLT1 were increased in broiler chicken's jejumum fed zinc bacitracin and sophorolipid supplemented diets (p < 0.05). Dietary zinc bacitracin supplementation could increase the population of Firmicutes in phylum level, and the portion of Turiciacter in genus level. On the other hands, the portion of Faecalibacterium was increased by dietary SPL supplementation compared to the other treatments. Our findings suggest that SPL supplementation improves growth performance through enhanced carbohydrate utilization capacity via improvement of gut morphological status and modulation of the cecal microbial population of broilers.

Zinc-chelated Vitamin C Stimulates Adipogenesis of 3T3-L1 Cells

  • Ghosh, Chiranjit;Yang, Seung Hak;Kim, Jong Geun;Jeon, Tae-Il;Yoon, Byung Hyun;Lee, Jai Young;Lee, Eun Young;Choi, Seok Geun;Hwang, Seong Gu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.8
    • /
    • pp.1189-1196
    • /
    • 2013
  • Adipose tissue development and function play a critical role in the regulation of energy balance, lipid metabolism, and the pathophysiology of metabolic syndromes. Although the effect of zinc ascorbate supplementation in diabetes or glycemic control is known in humans, the underlying mechanism is not well described. Here, we investigated the effect of a zinc-chelated vitamin C (ZnC) compound on the adipogenic differentiation of 3T3-L1 preadipocytes. Treatment with ZnC for 8 d significantly promoted adipogenesis, which was characterized by increased glycerol-3-phosphate dehydrogenase activity and intracellular lipid accumulation in 3T3-L1 cells. Meanwhile, ZnC induced a pronounced up-regulation of the expression of glucose transporter type 4 (GLUT4) and the adipocyte-specific gene adipocyte protein 2 (aP2). Analysis of mRNA and protein levels further showed that ZnC increased the sequential expression of peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) and CCAAT/enhancer-binding protein alpha (C/$EBP{\alpha}$), the key transcription factors of adipogenesis. These results indicate that ZnC could promote adipogenesis through $PPAR{\gamma}$ and C/$EBP{\alpha}$, which act synergistically for the expression of aP2 and GLUT4, leading to the generation of insulin-responsive adipocytes and can thereby be useful as a novel therapeutic agent for the management of diabetes and related metabolic disorders.