Browse > Article
http://dx.doi.org/10.14348/molcells.2021.0061

Regulatory Role of Zinc in Immune Cell Signaling  

Kim, Bonah (Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, and Department of Microbiology and Immunology, Seoul National University College of Medicine)
Lee, Won-Woo (Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, and Department of Microbiology and Immunology, Seoul National University College of Medicine)
Abstract
Zinc is an essential micronutrient with crucial roles in multiple facets of biological processes. Dysregulated zinc homeostasis impairs overall immune function and resultantly increases susceptibility to infection. Clinically, zinc supplementation is practiced for treatment of several infectious diseases, such as diarrhea and malaria. Recent focus on zinc as a beneficial element for immune system support has resulted in investigation of the immunomodulatory roles of zinc in a variety of immune cells. Besides its classical role as a cofactor that regulates the structural function of thousands of proteins, accumulating evidence suggests that zinc also acts, in a manner similar to calcium, as an ionic regulator of immune responses via participation as an intracellular messenger in signaling pathways. In this review, we focus on the role of zinc as a signaling molecule in major pathways such as those downstream of Toll-like receptors-, T cell receptor-, and cytokine-mediated signal transduction that regulate the activity and function of monocytes/macrophages and T cells, principal players in the innate and adaptive immune systems.
Keywords
monocytes/macrophages; phosphatase; signaling pathways; T cell receptor; T cells; Toll-like receptors; zinc; zinc transporter;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bao, S., Liu, M.J., Lee, B., Besecker, B., Lai, J.P., Guttridge, D.C., and Knoell, D.L. (2010). Zinc modulates the innate immune response in vivo to polymicrobial sepsis through regulation of NF-kappaB. Am. J. Physiol. Lung Cell. Mol. Physiol. 298, L744-L754.   DOI
2 Prasad, A.S., Bao, B., Beck, F.W., and Sarkar, F.H. (2011). Zinc-suppressed inflammatory cytokines by induction of A20-mediated inhibition of nuclear factor-kappaB. Nutrition 27, 816-823.   DOI
3 Rink, L. and Kirchner, H. (2000). Zinc-altered immune function and cytokine production. J. Nutr. 130(5S Suppl), 1407S-1411S.   DOI
4 Romir, J., Lilie, H., Egerer-Sieber, C., Bauer, F., Sticht, H., and Muller, Y.A. (2007). Crystal structure analysis and solution studies of human Lck-SH3; zinc-induced homodimerization competes with the binding of prolinerich motifs. J. Mol. Biol. 365, 1417-1428.   DOI
5 Sapkota, M. and Knoell, D.L. (2018). Essential role of zinc and zinc transporters in myeloid cell function and host defense against infection. J. Immunol. Res. 2018, 4315140.   DOI
6 Singh, K.B. and Maret, W. (2017). The interactions of metal cations and oxyanions with protein tyrosine phosphatase 1B. Biometals 30, 517-527.   DOI
7 Stefanova, I., Hemmer, B., Vergelli, M., Martin, R., Biddison, W.E., and Germain, R.N. (2003). TCR ligand discrimination is enforced by competing ERK positive and SHP-1 negative feedback pathways. Nat. Immunol. 4, 248-254.   DOI
8 Szewczyk, B. (2013). Zinc homeostasis and neurodegenerative disorders. Front. Aging Neurosci. 5, 33.   DOI
9 Tanaka, Y., Shiozawa, S., Morimoto, I., and Fujita, T. (1990). Role of zinc in interleukin 2 (IL-2)-mediated T-cell activation. Scand. J. Immunol. 31, 547-552.   DOI
10 Vallee, B.L. and Falchuk, K.H. (1993). The biochemical basis of zinc physiology. Physiol. Rev. 73, 79-118.   DOI
11 Kim, P.W., Sun, Z.Y., Blacklow, S.C., Wagner, G., and Eck, M.J. (2003). A zinc clasp structure tethers Lck to T cell coreceptors CD4 and CD8. Science 301, 1725-1728.   DOI
12 Anzilotti, C., Swan, D.J., Boisson, B., Deobagkar-Lele, M., Oliveira, C., Chabosseau, P., Engelhardt, K.R., Xu, X., Chen, R., Alvarez, L., et al. (2019). An essential role for the Zn2+ transporter ZIP7 in B cell development. Nat. Immunol. 20, 350-361.   DOI
13 Auld, D.S. (2001). Zinc coordination sphere in biochemical zinc sites. Biometals 14, 271-313.   DOI
14 Aydemir, T.B., Liuzzi, J.P., McClellan, S., and Cousins, R.J. (2009). Zinc transporter ZIP8 (SLC39A8) and zinc influence IFN-gamma expression in activated human T cells. J. Leukoc. Biol. 86, 337-348.   DOI
15 Colomar-Carando, N., Meseguer, A., Company-Garrido, I., Jutz, S., HerreraFernandez, V., Olvera, A., Kiefer, K., Brander, C., Steinberger, P., and Vicente, R. (2019). Zip6 transporter is an essential component of the lymphocyte activation machinery. J. Immunol. 202, 441-450.   DOI
16 Huse, M., Eck, M.J., and Harrison, S.C. (1998). A Zn2+ ion links the cytoplasmic tail of CD4 and the N-terminal region of Lck. J. Biol. Chem. 273, 18729-18733.   DOI
17 Haase, H. and Rink, L. (2009b). The immune system and the impact of zinc during aging. Immun. Ageing 6, 9.   DOI
18 Feske, S., Wulff, H., and Skolnik, E.Y. (2015). Ion channels in innate and adaptive immunity. Annu. Rev. Immunol. 33, 291-353.   DOI
19 Haase, H. and Rink, L. (2007). Signal transduction in monocytes: the role of zinc ions. Biometals 20, 579-585.   DOI
20 Haase, H. and Rink, L. (2009a). Functional significance of zinc-related signaling pathways in immune cells. Annu. Rev. Nutr. 29, 133-152.   DOI
21 Haase, H. and Rink, L. (2014). Zinc signals and immune function. Biofactors 40, 27-40.   DOI
22 Hara, T., Takeda, T.A., Takagishi, T., Fukue, K., Kambe, T., and Fukada, T. (2017). Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis. J. Physiol. Sci. 67, 283-301.   DOI
23 Hirano, T., Murakami, M., Fukada, T., Nishida, K., Yamasaki, S., and Suzuki, T. (2008). Roles of zinc and zinc signaling in immunity: zinc as an intracellular signaling molecule. Adv. Immunol. 97, 149-176.   DOI
24 Hojyo, S. and Fukada, T. (2016). Roles of zinc signaling in the immune system. J. Immunol. Res. 2016, 6762343.   DOI
25 Kim, J.H., Jeon, J., Shin, M., Won, Y., Lee, M., Kwak, J.S., Lee, G., Rhee, J., Ryu, J.H., Chun, C.H., et al. (2014). Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell 156, 730-743.   DOI
26 Liu, M.J., Bao, S., Galvez-Peralta, M., Pyle, C.J., Rudawsky, A.C., Pavlovicz, R.E., Killilea, D.W., Li, C., Nebert, D.W., Wewers, M.D., et al. (2013). ZIP8 regulates host defense through zinc-mediated inhibition of NF-kappaB. Cell Rep. 3, 386-400.   DOI
27 Prasad, A.S. (2000). Effects of zinc deficiency on Th1 and Th2 cytokine shifts. J. Infect. Dis. 182 Suppl 1, S62-S68.   DOI
28 Sun, G. and Budde, R.J. (1999). Substitution studies of the second divalent metal cation requirement of protein tyrosine kinase CSK. Biochemistry 38, 5659-5665.   DOI
29 Gao, H., Dai, W., Zhao, L., Min, J., and Wang, F. (2018). The role of zinc and zinc homeostasis in macrophage function. J. Immunol. Res. 2018, 6872621.   DOI
30 Gruber, K., Maywald, M., Rosenkranz, E., Haase, H., Plumakers, B., and Rink, L. (2013). Zinc deficiency adversely influences interleukin-4 and interleukin-6 signaling. J. Biol. Regul. Homeost. Agents 27, 661-671.
31 King, L.E., Frentzel, J.W., Mann, J.J., and Fraker, P.J. (2005). Chronic zinc deficiency in mice disrupted T cell lymphopoiesis and erythropoiesis while B cell lymphopoiesis and myelopoiesis were maintained. J. Am. Coll. Nutr. 24, 494-502.   DOI
32 Maywald, M., Wessels, I., and Rink, L. (2017). Zinc signals and immunity. Int. J. Mol. Sci. 18, 2222.   DOI
33 Plum, L.M., Brieger, A., Engelhardt, G., Hebel, S., Nessel, A., Arlt, M., Kaltenberg, J., Schwaneberg, U., Huber, M., Rink, L., et al. (2014). PTEN-inhibition by zinc ions augments interleukin-2-mediated Akt phosphorylation. Metallomics 6, 1277-1287.   DOI
34 Brieger, A., Rink, L., and Haase, H. (2013). Differential regulation of TLR-dependent MyD88 and TRIF signaling pathways by free zinc ions. J. Immunol. 191, 1808-1817.   DOI
35 Huang, L. and Tepaamorndech, S. (2013). The SLC30 family of zinc transporters - a review of current understanding of their biological and pathophysiological roles. Mol. Aspects Med. 34, 548-560.   DOI
36 Hwang, J.R., Byeon, Y., Kim, D., and Park, S.G. (2020). Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development. Exp. Mol. Med. 52, 750-761.   DOI
37 Kaltenberg, J., Plum, L.M., Ober-Blobaum, J.L., Honscheid, A., Rink, L., and Haase, H. (2010). Zinc signals promote IL-2-dependent proliferation of T cells. Eur. J. Immunol. 40, 1496-1503.   DOI
38 Prasad, A.S. (2013). Discovery of human zinc deficiency: its impact on human health and disease. Adv. Nutr. 4, 176-190.   DOI
39 Jeong, J. and Eide, D.J. (2013). The SLC39 family of zinc transporters. Mol Aspects Med. 34, 612-619.   DOI
40 Bellomo, E., Massarotti, A., Hogstrand, C., and Maret, W. (2014). Zinc ions modulate protein tyrosine phosphatase 1B activity. Metallomics 6, 1229-1239.   DOI
41 Chaplin, D.D. (2010). Overview of the immune response. J. Allergy Clin. Immunol. 125(2 Suppl 2), S3-S23.   DOI
42 Chiang, G.G. and Sefton, B.M. (2001). Specific dephosphorylation of the Lck tyrosine protein kinase at Tyr-394 by the SHP-1 protein-tyrosine phosphatase. J. Biol. Chem. 276, 23173-23178.   DOI
43 Wessels, I., Maywald, M., and Rink, L. (2017). Zinc as a gatekeeper of immune function. Nutrients 9, 1286.   DOI
44 von Bulow, V., Rink, L., and Haase, H. (2005). Zinc-mediated inhibition of cyclic nucleotide phosphodiesterase activity and expression suppresses TNF-alpha and IL-1 beta production in monocytes by elevation of guanosine 3',5'-cyclic monophosphate. J. Immunol. 175, 4697-4705.   DOI
45 Wan, Y., Petris, M.J., and Peck, S.C. (2014). Separation of zinc-dependent and zinc-independent events during early LPS-stimulated TLR4 signaling in macrophage cells. FEBS Lett. 588, 2928-2935.   DOI
46 Wapnir, R.A. (1990). Protein Nutrition and Mineral Absorption (Florida: CRC Press).
47 Haase, H., Mocchegiani, E., and Rink, L. (2006). Correlation between zinc status and immune function in the elderly. Biogerontology 7, 421-428.   DOI
48 Davis, S.R. and Cousins, R.J. (2000). Metallothionein expression in animals: a physiological perspective on function. J. Nutr. 130, 1085-1088.   DOI
49 Guha, M. and Mackman, N. (2001). LPS induction of gene expression in human monocytes. Cell. Signal. 13, 85-94.   DOI
50 Haase, H. and Maret, W. (2003). Intracellular zinc fluctuations modulate protein tyrosine phosphatase activity in insulin/insulin-like growth factor-1 signaling. Exp. Cell Res. 291, 289-298.   DOI
51 Haase, H., Ober-Blobaum, J.L., Engelhardt, G., Hebel, S., Heit, A., Heine, H., and Rink, L. (2008). Zinc signals are essential for lipopolysaccharide-induced signal transduction in monocytes. J. Immunol. 181, 6491-6502.   DOI
52 Lee, H., Kim, B., Choi, Y.H., Hwang, Y., Kim, D.H., Cho, S., Hong, S.J., and Lee, W.W. (2015). Inhibition of interleukin-1β-mediated interleukin-1 receptor-associated kinase 4 phosphorylation by zinc leads to repression of memory T helper type 17 response in humans. Immunology 146, 645-656.   DOI
53 Yu, M., Lee, W.W., Tomar, D., Pryshchep, S., Czesnikiewicz-Guzik, M., Lamar, D.L., Li, G., Singh, K., Tian, L., Weyand, C.M., et al. (2011). Regulation of T cell receptor signaling by activation-induced zinc influx. J. Exp. Med. 208, 775-785.   DOI
54 Kambe, T., Hashimoto, A., and Fujimoto, S. (2014). Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell. Mol. Life Sci. 71, 3281-3295.   DOI
55 Kawasaki, T. and Kawai, T. (2014). Toll-like receptor signaling pathways. Front. Immunol. 5, 461.
56 Kimura, T. and Kambe, T. (2016). The functions of metallothionein and ZIP and ZnT transporters: an overview and perspective. Int. J. Mol. Sci. 17, 336.   DOI
57 Kitabayashi, C., Fukada, T., Kanamoto, M., Ohashi, W., Hojyo, S., Atsumi, T., Ueda, N., Azuma, I., Hirota, H., Murakami, M., et al. (2010). Zinc suppresses Th17 development via inhibition of STAT3 activation. Int. Immunol. 22, 375-386.   DOI
58 Lee, W.W., Cui, D., Czesnikiewicz-Guzik, M., Vencio, R.Z., Shmulevich, I., Aderem, A., Weyand, C.M., and Goronzy, J.J. (2008). Age-dependent signature of metallothionein expression in primary CD4 T cell responses is due to sustained zinc signaling. Rejuvenation Res. 11, 1001-1011.   DOI
59 Lin, R.S., Rodriguez, C., Veillette, A., and Lodish, H.F. (1998). Zinc is essential for binding of p56(lck) to CD4 and CD8alpha. J. Biol. Chem. 273, 32878-32882.   DOI
60 von Bulow, V., Dubben, S., Engelhardt, G., Hebel, S., Plumakers, B., Heine, H., Rink, L., and Haase, H. (2007). Zinc-dependent suppression of TNF-alpha production is mediated by protein kinase A-induced inhibition of Raf-1, I kappa B kinase beta, and NF-kappa B. J. Immunol. 179, 4180-4186.   DOI
61 Bonaventura, P., Benedetti, G., Albarede, F., and Miossec, P. (2015). Zinc and its role in immunity and inflammation. Autoimmun. Rev. 14, 277-285.   DOI