Characterization of a Monosaccharide Transporter mstB Isolated as a Downstream Gene of MsnA in Aspergillus nidulans

Aspergillus nidulans에서 MsnA 하위 유전자로 선별된 단당류 수송자 mstB의 기능 분석

  • Received : 2011.09.22
  • Accepted : 2011.10.07
  • Published : 2011.12.31

Abstract

To screen downstream genes of Aspergillus nidulans MsnA showing amino acid sequence similarity to the zinc finger region of Msn2/4 stress response transcription factors in Saccharomyces cerevisiae, differentially expressed genes (DEG) in MsnA overexpressed or msnA null mutant strains compared to wild type have been isolated. The cognate gene IDs were identified by DNA sequencing of the selected DEGs. Among those, DEG6 was known as mstB encoding a putative monosaccharide transporter. Expression level of mstB mRNA was increased in MsnA overproducing strains and MsnA bound directly to the promoter region of mstB in vitro. MstB containing twelve transmembrane domains exhibited 80% of amino acid sequence identities to A. niger MstA a high-affinity monosaccharide transporter. A null mutant of mstB was phenotypically undistinguishable to wild type. On the other hand, forced overexpression of MstB caused the increased formation of sexual structure cleistothecia in 0.1% glucose condition where wild type showed almost no cleistothecia. This result implies that mstB is involved in transport of monosaccharide required for sexual differentiation.

스트레스 반응에 관여하는 Saccharomyces cerevisiae 전사인자인 Msn2/4의 $C_2H_2$ zinc finger 부위와 아미노산 서열 유사성을 보이는 Aspergillus nidulans MsnA의 하위 유전자 획득을 위하여 msnA 결손 돌연변이체 또는 과발현 균주에서 야생주와 비교하여 차별적으로 발현되는 유전자(Differentially Expressed Gene, DEG)들을 분리하였다. 선별된 DEG들은 염기서열 결정을 통해 해당 유전자들을 동정하였고 이들 중 DEG6는 단당류 수송자(monosaccharide transporter)로 예측된 mstB 유전자로 밝혀졌다. mstB의 발현은 MsnA 과발현에 의하여 증가되었으며 MsnA는 in vitro에서 mstB 프로모터 부위에 직접적으로 결합하였다. MstB는 12개의 막결합 부위를 가지며 A. niger의 고친화성 단당류 수송자(high-affinity monosaccharide transporter)인 MstA와 80%의 높은 아미노산 서열 동일성을 보였다. mstB 결손 돌연변이체의 표현형은 야생주와 유사하였으나 MstB가 과발현된 균주는 낮은 당 농도인 0.1% glucose 배지에서 유성생식 기관인 cleistothecia의 형성이 증가하였다. 이러한 결과는 단당류 수송자인 MstB가 유성분화 과정에서 요구되는 당의 수송에 관여하고 있음을 시사한다.

Keywords

References

  1. Andrisnopoulos, A. and W.E. Timberlake. 1994. The Aspergillus nidulans abaA gene encodes a transcriptional activator that acts as a genetic switch to control development. Mol. Cell. Biol. 14, 2503-2515. https://doi.org/10.1128/MCB.14.4.2503
  2. Bayram, O., S. Krappmann, M. Ni, J.W. Bok, K. Helmstaedt, O. Valerius, S. Braus-Stromeyer, N.J. Kwon, N.P. Keller, J.H. Yu, and et al. 2008. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320, 1504-1506. https://doi.org/10.1126/science.1155888
  3. Capaldi, A.P., T. Kaplan, Y. Liu, N. Habib, A. Regev, N. Friedman, and E.K. O'Shea. 2008. Structure and function of a transcriptional network activated by the MAPK Hog1. Nat. Genet. 40, 1300-1306. https://doi.org/10.1038/ng.235
  4. Cubero, B. and C. Scazzocchio. 1994. Two different, adjacent and divergent zinc finger binding sites are necessary for CREA-mediated carbon catabolite repression in the proline gene cluster of Aspergillus nidulans. EMBO J. 13, 407-415.
  5. Dower, W.J., J.F. Miller, and C.W. Ragsdale. 1988. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 16, 6127-6145. https://doi.org/10.1093/nar/16.13.6127
  6. Espeso, E.A., J. Tilburn, L. Sanchez-Pulido, C.V. Brown, A. Valencia, H.N. Arst Jr., and M.A. Penalva. 1997. Specific DNA recognition by the Aspergillus nidulans three zinc finger transcription factor PacC. J. Mol. Biol. 274, 466-480. https://doi.org/10.1006/jmbi.1997.1428
  7. Etxebeste, O., M. Ni, A. Garzia, N.J. Kwon, R. Fischer, J.H. Yu, E.A. Espeso, and U. Ugalde. 2008. Basic-zipper-type transcription factor FlbB controls asexual development in Aspergillus nidulans. Eukaryot. Cell 7, 38-48.
  8. Fan, J., V. Chaturvedi, and S.H. Shen. 2002. Identification and phylogenetic analysis of a glucose transporter gene family from the human pathogenic yeast Candida albicans. J. Mol. Evol. 55, 336-346. https://doi.org/10.1007/s00239-002-2330-4
  9. Garzia, A., O. Etxebeste, E. Herrero-Garcia, R. Fischer, E.A. Espeso, and U. Ugalde. 2009. Aspergillus nidulans FlbE is an upstream developmental activator of conidiation functionally associated with the putative transcription factor FlbB. Mol. Microbiol. 71, 172-184. https://doi.org/10.1111/j.1365-2958.2008.06520.x
  10. Hagiwara, D., Y. Asano, J. Marui, A. Yoshimi, T. Mizuno, and K. Abe. 2009. Transcriptional profiling for Aspergillus nidulans HogA MAPK signaling pathway in response to fludioxonil and osmotic stress. Fungal Genet. Biol. 46, 868-878. https://doi.org/10.1016/j.fgb.2009.07.003
  11. Han, D.M., Y.J. Han, J.H. Kim, K.Y. Jahng, Y.S. Chung, J.H. Chung, and K.S. Chae. 1994. Isolation and characterization of NSD mutants in Aspergillus nidulans. Kor. J. Mycol. 22, 1-7.
  12. Han, K.H., S.S. Cheong, H.S. Hoe, and D.M. Han. 1998. Characterization of several NSD mutants of Aspergillus nidulans that never undergo sexual development. Kor. J. Genet. 20, 257-264.
  13. Han, K.H., K.Y. Han, J.H. Yu, K.S. Chae, K.Y. Jahng, and D.M. Han. 2001. The nsdD gene encodes a putative GATA-type transcription factor necessary for sexual development of Aspergillus nidulans. Mol. Microbiol. 41, 299-309. https://doi.org/10.1046/j.1365-2958.2001.02472.x
  14. Han, K.-H. and R.A. Prade. 2002. Osmotic stress-coupled maintenance of polar growth in Aspergillus nidulans. Mol. Microbiol. 43, 1065-1078. https://doi.org/10.1046/j.1365-2958.2002.02774.x
  15. Han, K.-H., D.-B. Lee, J.-H. Kim, M.-S. Kim, K.-Y. Han, Y.-S. Park, W.-S. Kim, H.-B. Kim, and D.-M. Han. 2003. Environmental factors affecting development of Aspergillus nidulans. J. Microbiol. 41, 34-40.
  16. Jeon, M.H., D. Hagiwara, A. Yoshimi, K. Abe, D.M. Han, and S.K. Chae. 2009. Analysis of nrdA, a negative regulator of differentiation in Aspergillus nidulans. In Proceeding of 25th Fungal Genetics Conference, Pacific Grove, CA, USA.
  17. Kafer, E. 1965. Origins of translocations in Aspergillus nidulans. Genetics 52, 217-232.
  18. Kafer, E. 1977. Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Adv. Genet. 33-67.
  19. Kim, H., K. Han, K. Kim, D. Han, K. Jahng, and K. Chae. 2002. The veA gene activates sexual development in Aspergillus nidulans. Fungal Genet. Biol. 37, 72-80. https://doi.org/10.1016/S1087-1845(02)00029-4
  20. Kim, H.R., K.S. Chae, K.H. Han, and D.M. Han. 2009. The nsdC gene encoding a putative C2H2-type transcription factor is a key activator of sexual development in Aspergillus nidulans. Genetics 182, 771-783. https://doi.org/10.1534/genetics.109.101667
  21. Kwon, N.J. 2005. Ph. D. thesis. Paichai University. Seoul, Republic of Korea.
  22. Kwon, N.J., A. Garzia, E.A. Espeso, U. Ugalde, and J.H. Yu. 2010. FlbC is a putative nuclear C2H2 transcription factor regulating development in Aspergillus nidulans. Mol. Microbiol. 77, 1203-1219. https://doi.org/10.1111/j.1365-2958.2010.07282.x
  23. Maier, A., B. Völker, E. Boles, and G.F. Fuhrmann. 2002. Characterization of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (counter transport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters. FEMS Yeast Res. 2, 539-550.
  24. Marchler, G., C. Schüller, G. Adam, and H. Ruis. 1993. A Saccharomyces cerevisiae UAS element controlled by protein kinas A activates transcription in response to a variety of stress conditions. EMBO J. 12, 1997-2003.
  25. Megabit, P.M., T.H. Adams, and W.E. Timberlake. 1989. Interactions of three sequentially expressed genes control temporal and spatial specificity in Aspergillus development. Cell 57, 859-868. https://doi.org/10.1016/0092-8674(89)90800-3
  26. Pontecorvo, G., J.A. Roper, L.M. Hemmons, K.D. Macdonald, and A.W. Bufton. 1953. The genetics of Aspergillus nidulans. Adv. Genet. 5, 141-238.
  27. Seidl, V., B. Seiboth, L. Karaffa, and C.P. Kubicek. 2004. The fungal STRE-element-binding protein Seb1 is involved but not essential for glycerol dehydrogenase (gld1) gene expression and glycerol accumulation in Trichoderma atroviride during osmotic stress. Fungal Genet. Biol. 41, 1132-1140. https://doi.org/10.1016/j.fgb.2004.09.002
  28. Vankuyk, P.A., J.A. Diderich, A.P. MacCabe, O. Hererro, G.J. Ruijter, and J. Visser. 2004. Aspergillus niger mstA encodes a high-affinity sugar/$H^+$ symporter which is regulated in response to extracellular pH. Biochem. J. 379, 375-383. https://doi.org/10.1042/BJ20030624
  29. Watanabe, T., K. Miyashita, T.T. Saito, T. Yoneki, Y. Kakihara, K. Nabeshima, Y.A. Kishi, C. Shimoda, and H. Nojima. 2001. Comprehensive isolation of meiosis-specific genes identifies novel proteins and unusual non-coding transcripts in Schizosaccharomyces pombe. Nucleic Acids Res. 29, 2327-2337. https://doi.org/10.1093/nar/29.11.2327
  30. Wei, H., M. Scherer, A. Singh, R. Liese, and R. Fischer. 2001. Aspergillus nidulans alpha-1,3 glucanase (mutanase), mutA, is expressed during sexual development and mobilizes mutan. Fungal Genet. Biol. 34, 217-227. https://doi.org/10.1006/fgbi.2001.1303
  31. Wei, H., K. Vienken, R. Weber, S. Bunting, N. Requena, and R. Fischer. 2004. A putative high affinity hexose transporter, hxtA, of Aspergillus nidulans is induced in vegetative hyphae upon starvation and in ascogenous hyphae during cleistothecium formation. Fungal Genet. Biol. 41, 148-156. https://doi.org/10.1016/j.fgb.2003.10.006
  32. Wieczorke, R., S. Krampe, T. Weierstall, K. Freidel, C.P. Hollenberg, and E. Boles. 1999. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett. 464, 123-128. https://doi.org/10.1016/S0014-5793(99)01698-1
  33. Wieser, J., B.-N. Lee, J. Fondon 3rd, and T.H. Adams. 1994. Genetic requirements for initiating asexual development in Aspergillus nidulans. Curr. Genet. 27, 62-69. https://doi.org/10.1007/BF00326580
  34. Wieser, J. and T.H. Adams. 1995. flbD encodes a Myb-like DNA-binding protein that coordinates initiation of Aspergillus nidulans conidiophore development. Genes Dev. 9, 491-502. https://doi.org/10.1101/gad.9.4.491
  35. Yu, J.H., Z. Hamari, K.H. Han, J.A. Seo, Y. Reyes-Domínguez, and C. Scazzocchio. 2004. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol. 41, 973-981. https://doi.org/10.1016/j.fgb.2004.08.001
  36. Zonneveld, B.J. 1972. Morphogenesis in Aspergillus nidulans. The significance of a alpha-1,3-glucan of the cell wall and alpha-1,3-glucanase for cleistothecium development. Biochim. Biophys. Acta 273, 174-187. https://doi.org/10.1016/0304-4165(72)90205-X
  37. Zonneveld, B.J. 1973. Inhibitory effect of 2-deoxyglucose on cell wall alpha-1,3-glucan synthesis and cleistothecium development in Aspergillus nidulans. Dev. Biol. 34, 1-8. https://doi.org/10.1016/0012-1606(73)90334-5