• Title/Summary/Keyword: zero-inflated

Search Result 81, Processing Time 0.022 seconds

Bayesian analysis of Korean income data using zero-inflated Tobit model (영과잉 토빗모형을 이용한 한국 소득분포 자료의 베이지안 분석)

  • Hwang, Jisu;Kim, Sei-Wan;Oh, Man-Suk
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.6
    • /
    • pp.917-929
    • /
    • 2017
  • Korean income data obtained from Korea Labor Panel Survey shows excessive zeros, which may not be properly explained by the Tobit model. In this paper, we analyze the data using a zero-inflated Tobit model to incorporate excessive zeros. A zero-inflated Tobit model consists of two stages. In the first stage, individuals with 0 income are divided into two groups: genuine zero group and random zero group. Individuals in the genuine zero group did not participate labor market since they have no intention to do so. Individuals in the random zero group participated labor market but their incomes are very low and truncated at 0. In the second stage, the Tobit model is assumed to a subset of data combining random zeros and positive observations. Regression models are employed in both stages to obtain the effect of explanatory variables on the participation of labor market and the income amount. Markov chain Monte Carlo methods are applied for the Bayesian analysis of the data. The proposed zero-inflated Tobit model outperforms the Tobit model in model fit and prediction of zero frequency. The analysis results show strong evidence that the probability of participating in the labor market increases with age, decreases with education, and women tend to have stronger intentions on participating in the labor market than men. There also exists moderate evidence that the probability of participating in the labor market decreases with socio-economic status and reserved wage. However, the amount of monthly wage increases with age and education, and it is larger for married than unmarried and for men than women.

A simple zero inflated bivariate negative binomial regression model with different dispersion parameters

  • Kim, Dongseok
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.895-900
    • /
    • 2013
  • In this research, we propose a simple bivariate zero inflated negative binomial regression model with different dispersion for bivariate count data with excess zeros. An application to the demand for health services shows that the proposed model is better than existing models in terms of log-likelihood and AIC.

The Reanalysis of the Donation Data Using the Zero-Inflated Possion Regression (0이 팽창된 포아송 회귀모형을 이용한 기부회수 자료의 재분석)

  • Kim, In-Young;Park, Tae-Kyu;Kim, Byung-Soo
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.4
    • /
    • pp.819-827
    • /
    • 2009
  • Kim et al. (2006) analyzed the donation data surveyed by Voluneteer 21 in year 2002 at South Korea using a Poisson regression based on the mixture of two Poissons and detected significant variables for affecting the number of donations. However, noting the large deviation between the predicted and the actual frequencies of zero, we developed in this note a Poisson regression model based on a distribution in which zero inflated Poisson was added to the mixture of two Poissons. Thus the population distribution is now a mixture of three Poissons in which one component is concentrated on zero mass. We used the EM algorithm for estimating the regression parameters and detected the same variables with Kim et al's for significantly affecting the response. However, we could estimate the proportion of the fixed zero group to be 0.201, which was the characteristic of this model. We also noted that among two significant variables, the income and the volunteer experience(yes, no), the second variable could be utilized as a strategric variable for promoting the donation.

Zero-Inflated Poisson Model with a Change-point (변화시점이 있는 영과잉-포아송모형)

  • Kim, Kyung-Moo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 1998
  • In case of Zero-Inflated Poisson model with a change-point, likelihood ratio test statistic was used for testing hypothesis for a change-point. A change-point and several interesting parameters were estimated by using the method of moments and maximum likelihood. In order to compare the estimators, empirical mean-square-error was used. Real data for the Zero-Inflated Poisson model with a change-point and Poisson model without a change-point were examined.

  • PDF

Sample size calculations for clustered count data based on zero-inflated discrete Weibull regression models

  • Hanna Yoo
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.1
    • /
    • pp.55-64
    • /
    • 2024
  • In this study, we consider the sample size determination problem for clustered count data with many zeros. In general, zero-inflated Poisson and binomial models are commonly used for zero-inflated data; however, in real data the assumptions that should be satisfied when using each model might be violated. We calculate the required sample size based on a discrete Weibull regression model that can handle both underdispersed and overdispersed data types. We use the Monte Carlo simulation to compute the required sample size. With our proposed method, a unified model with a low failure risk can be used to cope with the dispersed data type and handle data with many zeros, which appear in groups or clusters sharing a common variation source. A simulation study shows that our proposed method provides accurate results, revealing that the sample size is affected by the distribution skewness, covariance structure of covariates, and amount of zeros. We apply our method to the pancreas disorder length of the stay data collected from Western Australia.

Fit of the number of insurance solicitor's turnovers using zero-inflated negative binomial regression (영과잉 음이항회귀 모형을 이용한 보험설계사들의 이직횟수 적합)

  • Chun, Heuiju
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.1087-1097
    • /
    • 2017
  • This study aims to find the best model to fit the number of insurance solicitor's turnovers of life insurance companies using count data regression models such as poisson regression, negative binomial regression, zero-inflated poisson regression, or zero-inflated negative binomial regression. Out of the four models, zero-inflated negative binomial model has been selected based on AIC and SBC criteria, which is due to over-dispersion and high proportion of zero-counts. The significant factors to affect insurance solicitor's turnover found to be a work period in current company, a total work period as financial planner, an affiliated corporation, and channel management satisfaction. We also have found that as the job satisfaction or the channel management satisfaction gets lower as channel management satisfaction, the number of insurance solicitor's turnovers increases. In addition, the total work period as financial planner has positive relationship with the number of insurance solicitor's turnovers, but the work period in current company has negative relationship with it.

Integer-Valued GARCH Models for Count Time Series: Case Study (계수 시계열을 위한 정수값 GARCH 모델링: 사례분석)

  • Yoon, J.E.;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.1
    • /
    • pp.115-122
    • /
    • 2015
  • This article is concerned with count time series taking values in non-negative integers. Along with the first order mean of the count time series, conditional variance (volatility) has recently been paid attention to and therefore various integer-valued GARCH(generalized autoregressive conditional heteroscedasticity) models have been suggested in the last decade. We introduce diverse integer-valued GARCH(INGARCH, for short) processes to count time series and a real data application is illustrated as a case study. In addition, zero inflated INGARCH models are discussed to accommodate zero-inflated count time series.

A joint modeling of longitudinal zero-inflated count data and time to event data (경시적 영과잉 가산자료와 생존자료의 결합모형)

  • Kim, Donguk;Chun, Jihun
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1459-1473
    • /
    • 2016
  • Both longitudinal data and survival data are collected simultaneously in longitudinal data which are observed throughout the passage of time. In this case, the effect of the independent variable becomes biased (provided that sole use of longitudinal data analysis does not consider the relation between both data used) if the missing that occurred in the longitudinal data is non-ignorable because it is caused by a correlation with the survival data. A joint model of longitudinal data and survival data was studied as a solution for such problem in order to obtain an unbiased result by considering the survival model for the cause of missing. In this paper, a joint model of the longitudinal zero-inflated count data and survival data is studied by replacing the longitudinal part with zero-inflated count data. A hurdle model and proportional hazards model were used for each longitudinal zero inflated count data and survival data; in addition, both sub-models were linked based on the assumption that the random effect of sub-models follow the multivariate normal distribution. We used the EM algorithm for the maximum likelihood estimator of parameters and estimated standard errors of parameters were calculated using the profile likelihood method. In simulation, we observed a better performance of the joint model in bias and coverage probability compared to the separate model.

Bivariate Zero-Inflated Negative Binomial Regression Model with Heterogeneous Dispersions (서로 다른 산포를 허용하는 이변량 영과잉 음이항 회귀모형)

  • Kim, Dong-Seok;Jeong, Seul-Gi;Lee, Dong-Hee
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.5
    • /
    • pp.571-579
    • /
    • 2011
  • We propose a new bivariate zero-inflated negative binomial regression model to allow heterogeneous dispersions. To show the performance of our proposed model, Health Care data in Deb and Trivedi (1997) are used to compare it with the other bivariate zero-inflated negative binomial model proposed by Wang (2003) that has a common dispersion between the two response variables. This empirical study shows better results from the views of log-likelihood and AIC.

Modelling Count Responses with Overdispersion

  • Jeong, Kwang Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.6
    • /
    • pp.761-770
    • /
    • 2012
  • We frequently encounter outcomes of count that have extra variation. This paper considers several alternative models for overdispersed count responses such as a quasi-Poisson model, zero-inflated Poisson model and a negative binomial model with a special focus on a generalized linear mixed model. We also explain various goodness-of-fit criteria by discussing their appropriateness of applicability and cautions on misuses according to the patterns of response categories. The overdispersion models for counts data have been explained through two examples with different response patterns.