• Title/Summary/Keyword: zero-energy

Search Result 1,178, Processing Time 0.027 seconds

Landslide risk zoning using support vector machine algorithm

  • Vahed Ghiasi;Nur Irfah Mohd Pauzi;Shahab Karimi;Mahyar Yousefi
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.267-284
    • /
    • 2023
  • Landslides are one of the most dangerous phenomena and natural disasters. Landslides cause many human and financial losses in most parts of the world, especially in mountainous areas. Due to the climatic conditions and topography, people in the northern and western regions of Iran live with the risk of landslides. One of the measures that can effectively reduce the possible risks of landslides and their crisis management is to identify potential areas prone to landslides through multi-criteria modeling approach. This research aims to model landslide potential area in the Oshvand watershed using a support vector machine algorithm. For this purpose, evidence maps of seven effective factors in the occurrence of landslides namely slope, slope direction, height, distance from the fault, the density of waterways, rainfall, and geology, were prepared. The maps were generated and weighted using the continuous fuzzification method and logistic functions, resulting values in zero and one range as weights. The weighted maps were then combined using the support vector machine algorithm. For the training and testing of the machine, 81 slippery ground points and 81 non-sliding points were used. Modeling procedure was done using four linear, polynomial, Gaussian, and sigmoid kernels. The efficiency of each model was compared using the area under the receiver operating characteristic curve; the root means square error, and the correlation coefficient . Finally, the landslide potential model that was obtained using Gaussian's kernel was selected as the best one for susceptibility of landslides in the Oshvand watershed.

An integral quasi-3D computational model for the hygro-thermal wave propagation of imperfect FGM sandwich plates

  • Abdelouahed Tounsi;Saeed I. Tahir;Mohammed A. Al-Osta;Trinh Do-Van;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdeldjebbar Tounsi
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.61-74
    • /
    • 2023
  • This article investigates the wave propagation analysis of the imperfect functionally graded (FG) sandwich plates based on a novel simple four-variable integral quasi-3D higher-order shear deformation theory (HSDT). The thickness stretching effect is considered in the transverse displacement component. The presented formulation ensures a parabolic variation of the transverse shear stresses with zero-stresses at the top and the bottom surfaces without requiring any shear correction factors. The studied sandwich plates can be used in several sectors as areas of aircraft, construction, naval/marine, aerospace and wind energy systems, the sandwich structure is composed from three layers (two FG face sheets and isotropic core). The material properties in the FG faces sheet are computed according to a modified power law function with considering the porosity which may appear during the manufacturing process in the form of micro-voids in the layer body. The Hamilton principle is utilized to determine the four governing differential equations for wave propagation in FG plates which is reduced in terms of computation time and cost compared to the other conventional quasi-3D models. An eigenvalue equation is formulated for the analytical solution using a generalized displacements' solution form for wave propagation. The effects of porosity, temperature, moisture concentration, core thickness, and the material exponent on the plates' dispersion relations are examined by considering the thickness stretching influence.

Application of computer methods for the effects of nanoparticles on the frequency of the concrete beams experimentally and numerically

  • Chencheng Song;Junfeng Shi;Ibrahim Albaijan;H. Elhosiny Ali;Amir Behshad
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.19-25
    • /
    • 2023
  • Due to high application of concrete structures in construction industry, however, the quality improvement is essential. One of the new ways for this purpose is adding the nanoparticles to the concrete. In this work, vibration analysis of concrete beams reinforced by graphene oxide (GO) nanoparticles based on mathematical model has been investigated. For the accuracy of the presented model, the experimental study is done for comparing the compressive strength. Since the nanoparticles can not be solved in water without any specific process, at the first, GO nanoparticles should be dispersed in water by using shaker, magnetic striker, ultrasonic devices and finally mechanical mixer. For modelling of the strucuture, sinusoidal shear deformation beam theory (SSDBT) is utilized. Mori-Tanak model model is utilized for obtaining the effective properties of the beam including agglomeration influences. Utilizing the energy method and Hamilton's principal, the motion equations are calculated. The frequency of the concrete beam is obtanied by analytical method. Three samples with 0.02% GO nanoparticles are built and its compressive strength is compared which shows a good accuracy with maximum 1.29% difference with mathematical model and other papers. The aim of this work from the theoretical study is investigating the effects of nanoparticles volume percentage and agglomeration, length and thickness of the beam on the frequency of the structure. The results show that the with enhancing the GO nanoparticles, the frequency is increased. For example, with enhancing the volume percent of GO nanoparticles from zero to 0.08%, the compressive strength is increased 48.91%. and 46.83%, respectively for two cases of with and without agglomeration.

Characteristics of Heavy Metal Oxide Glasses in BaO-GeO2-La2O3-ZnO-Sb2O3 System for Infrared Lens (적외선 렌즈용 BaO-GeO2-La2O3-ZnO-Sb2O3계 중금속 산화물 유리의 특성)

  • Sang-Jin Park;Bok-Hyun Oh;Sang-Jin Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.414-421
    • /
    • 2023
  • Infrared radiation (IR) refers to the region of the electromagnetic radiation spectrum where wavelengths range from about 700 nm to 1 mm. Any object with a temperature above absolute zero (0 K) radiates in the infrared region, and a material that transmits radiant energy in the range of 0.74 to 1.4 um is referred to as a near-infrared optical material. Germanate-based glass is attracting attention as a glass material for infrared optical lenses because of its simple manufacturing process. With the recent development of the glass molding press (GMP) process, thermal imaging cameras using oxide-based infrared lenses can be easily mass-produced, expanding their uses. To improve the mechanical and optical properties of commercial materials consisting of ternary systems, germanate-based heavy metal oxide glasses were prepared using a melt-cooling method. The fabricated samples were evaluated for thermal, structural, and optical properties using DSC, XRD, and XRF, respectively. To derive a composition with high glass stability for lens applications, ZnO and Sb2O3 were substituted at 0, 1, 2, 3, and 4 mol%. The glass with 1 mol% added Sb2O3 was confirmed to have the optimal conditions, with an optical transmittance of 80 % or more, a glass transition temperature of 660 ℃, a refractive index of 1.810, and a Vickers hardness of 558. The possibility of its application as an alternative infrared lens material to existing commercial materials capable of GMP processing was confirmed.

A Case Study on Near-Cloud Turbulence around the Mesoscale Convective System in the Korean Peninsula (한반도에서 발생한 중규모 대류계의 구름 주변 난류 발생 메커니즘 사례 연구)

  • Sung-Il Yang;Ju Heon Lee;Jung-Hoon Kim
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.153-176
    • /
    • 2024
  • At 0843 UTC 30 May 2021, a commercial aircraft encountered severe turbulence at z = 11.5 km associated with the rapid development of Mesoscale Convective System (MCS) in the Gyeonggi Bay of Korea. To investigate the generation mechanisms of Near-Cloud Turbulence (NCT) near the MCS, Weather Research and Forecasting model was used to reproduce key features at multiple-scales with four nested domains (the finest ∆x = 0.2 km) and 112 hybrid vertical layers. Simulated subgrid-scale turbulent kinetic energy (SGS TKE) was located in three different regions of the MCS. First, the simulated NCT with non-zero SGS TKE at z = 11.5 km at 0835 UTC was collocated with the reported NCT. Cloud-induced flow deformation and entrainment process on the downstream of the overshooting top triggered convective instability and subsequent SGS TKE. Second, at z = 16.5 km at 0820 UTC, the localized SGS TKE was found 4 km above the overshooting cloud top. It was attributed to breaking down of vertically propagating convectively-induced gravity wave at background critical level. Lastly, SGS TKE was simulated at z = 11.5 km at 0930 UTC during the dissipating stage of MCS. Upper-level anticyclonic outflow of MCS intensified the environmental westerlies, developing strong vertical wind shear on the northeastern quadrant of the dissipating MCS. Three different generation mechanisms suggest the avoidance guidance for the possible NCT events near the entire period of the MCS in the heavy air traffic area around Incheon International Airport in Korea.

The Effect of Sampling Rate on Statistical Properties of Extreme Wave (파랑자료의 sampling rate가 극한파의 통계에 미치는 영향)

  • Kim, Do Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.1
    • /
    • pp.36-41
    • /
    • 2013
  • In this paper time series wave data are simulated using wave spectrum with random phases of the wave signal. The simulated wave signals are used to study the effect of the sampling rate on the ocean wave characteristics. Effect of sampling rate on wave data which include extreme wave such as freak waves are examined and various wave characteristics including abnormality index (AI), kurtosis of wave profile and maximum wave height are examined. Various wave heights are decreased as the sampling rate decreases. The zero-th moment of the wave spectrum does not affect much on the sampling rate but the second moment are greately affected on the sampling rate. The error due to the sampling rate is decreases as the wave period increases. The error in significant wave height based on the wave spectrum $H_s$ is smaller than that on the time domain method $H_{1/3}$. AI index and kurtosis of wave profile do not deviate much from the exact date as long as the sampling rate is greater than 1 Hz. Ocean wave measurement with the sampling frequency higher than 1 Hz will result the error less than 5% in estimating the height of extreme waves.

Recompression Properties of Sand in Post-Liquefaction Process According to Relative Density and Cyclic Loading History (상대밀도와 반복전단이력의 차이에 의한 모래의 액상화 후 재압축 특성)

  • Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.21-29
    • /
    • 2012
  • Ground failure by liquefaction can occur not only during shaking but also as the result of the post-liquefaction process after an earthquake. During the process of ground deformation and failure, excess pore water pressure in soil is redistributed, which can then lead to changes in the effective stress of soils. Therefore, in order to provide a further understanding of the phenomenon, we have to estimate the properties of effective stress during the recompression process in post-liquefaction as well, not only the total amount of pore water drained. The primary objectives of this study are to determine and compare the recompression properties in the post-liquefaction process in terms of the relationship between volumetric strains and mean effective stresses under the various conditions of relative density and shear stress history. In all experimental cases, the volumetric strains increase greatly in the low effective stress level, almost to the zero zone, and granite soil, which has fine grains, undergoes gradual changes in the relationship between volumetric strains and mean effective stresses compared with fine sand. And, we can also find that recompression properties in the post-liquefaction process by cyclic loading depend highly on the dissipation energy and maximum shear strain, and this fact can be obtained in all cases regardless of the existence of fine content, relative density, and loading history. Especially, granite soil having fine grains can be defined uniformly in the relationship between dissipation energy and maximum volumetric strain, while fine sand cannot be so uniformly defined.

Microwave hybrid sintering of NTC themistor (마이크로파 하이브리드 소결법에 의한 NTC 서미스터의 제조)

  • 최영락;안진용;안주삼;백동규;최승철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.508-512
    • /
    • 1998
  • The NTC thermistors were sintered by using microwave hybrid heating method at $1100^{\circ}C$~$1300^{\circ}C$ and those electrical properties were investigated. The obtained $B_{25^{\circ}C/85^{\circ}C}$ values from temperature dependence of electrical resisitivity were around 3100~3200 K which were almost the same values as conventionally sintered ones. Compared with conventional sintering process, this process could complete whole sintering process within 20 minutes. This the processing time and energy consumption could be reduced through this rapid heating by using microwave hybrid heating.t there were showed only two peaks, glycolide melting peak and lower molecular weight melting peak without lauryl alcohol. Conversion increased slowly with the reaction time up to 50 minutes, and then gave a sudden increase above that. The reaction time to disappear in glycolide melting peak during polymerization was shortened with the increase of lauryl alcohol content. Zero-shear viscosity of polyglycolic acid decreased with the increase of free acid content in glycolide.ssional energy and bending hysteresis increased. \circled3 Surface characteristics such as friction coefficient and thickness variation of highly shrinkage fabrics became relatively roughened state. \circled4 Since stiffened and roughened characteristics of highly shrinkage fabrics, drapabilities of them were significantly lowered. Additionally thermal insulation property of high shrinkage fabric was higher than that of low shrinkage fabric due to bulky and thickened feature. From the results, it is considered that the silk fabrics with high filling shrinkage have the good bulkiness and heat keeping properties and thus they have the suitable characteristics for high quality men's and women's formal garments.

  • PDF

Effects of Gas Background Temperature Difference(Emissivity) on OGI(Optical Gas Image) Clarity (가스의 배경 온도 차이(방사율)가 OGI(Optical Gas Image)의 선명도에 미치는 영향)

  • Park, Su-Ri;Han, Sang-Wook;Kim, Byung-Jick;Hong, Cheol-Jae
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.5
    • /
    • pp.1-8
    • /
    • 2017
  • Currently gas safety management in the industrial field has been done by LDAR as contact method or methane leak detector as non-contact method. But LDAR method requires a lot of man-power and methane leak detector have the limitation of methane only. Therefore the Research on the OGI(optical gas image) has big attention by industry. This research was undertaken to see the effect of background temperature difference of gas cloud on the clarity of OGI. The background temperature control panel was constructed to cool down the background temperature. OGI was taken at the various methane gas ejection rate and the designed temperature difference. The experimental results showed that the OGI(when the temperature difference is $-6^{\circ}C$) is more clear thane the OGI(when the temperature difference is zero). To quantify the clarity difference, MATLAB's RGB analysis method was employed. The RGB value of the OGI at ${\Delta}T-6^{\circ}C$ was 20% lower than the OGI at ${\Delta}T0^{\circ}C$. The clarity difference by T difference can be explained by the total radiation law. When the background temperature of the gas is lower than the air temperature, the radiation energy coming into the OGI lens is increasing. As the energy is increasing, the OGI image becomes clear.

Estimating the Global Inflow and Stock of Plastic Marine Debris Using Material Flow Analysis: a Preliminary Approach (물질흐름분석을 활용한 전세계 플라스틱 해양쓰레기의 유입량과 현존량 추정: 예비적 접근)

  • Jang, Yong Chang;Lee, Jongmyoung;Hong, Sunwook;Choi, Hyun Woo;Shim, Won Joon;Hong, Su Yeon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.4
    • /
    • pp.263-273
    • /
    • 2015
  • We estimated the global inflow and stock of plastic marine debris. In South Korea, we estimated that the annual inflow of plastic marine debris (72,956 tons) was about 1.4% of annual plastics consumption (5.2 million tons) in 2012. By applying this 1.4% ratio to global plastics production from 1950 to 2013, we estimated that 4.2 million tons of plastic debris entered the ocean in 2013 and that there is a stock of 86 million tons of plastic marine debris as of the end of 2013, assuming zero outflow. In addition, with a logistic model, if 4% of petroleum is turned into plastics, the final stock of plastic marine debris shall be 199 million tons at the end. As the inflow and the stock are different units of measurement, better indicators to assess the effectiveness of inflow-reducing policies are needed. And, as the pollution from plastic marine debris is almost irreversible, countermeasures to prevent it should be valued more, and stronger preventive measures should be taken under the precautionary principle. As this is a preliminary study based on limited information, further research is needed to clarify the tendency of inflow and stock of plastic marine debris.