DOI QR코드

DOI QR Code

Characteristics of Heavy Metal Oxide Glasses in BaO-GeO2-La2O3-ZnO-Sb2O3 System for Infrared Lens

적외선 렌즈용 BaO-GeO2-La2O3-ZnO-Sb2O3계 중금속 산화물 유리의 특성

  • Sang-Jin Park (Department of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Bok-Hyun Oh (KAIROS Corp.) ;
  • Sang-Jin Lee (Department of Advanced Materials Science and Engineering, Mokpo National University)
  • Received : 2023.07.06
  • Accepted : 2023.10.01
  • Published : 2023.10.27

Abstract

Infrared radiation (IR) refers to the region of the electromagnetic radiation spectrum where wavelengths range from about 700 nm to 1 mm. Any object with a temperature above absolute zero (0 K) radiates in the infrared region, and a material that transmits radiant energy in the range of 0.74 to 1.4 um is referred to as a near-infrared optical material. Germanate-based glass is attracting attention as a glass material for infrared optical lenses because of its simple manufacturing process. With the recent development of the glass molding press (GMP) process, thermal imaging cameras using oxide-based infrared lenses can be easily mass-produced, expanding their uses. To improve the mechanical and optical properties of commercial materials consisting of ternary systems, germanate-based heavy metal oxide glasses were prepared using a melt-cooling method. The fabricated samples were evaluated for thermal, structural, and optical properties using DSC, XRD, and XRF, respectively. To derive a composition with high glass stability for lens applications, ZnO and Sb2O3 were substituted at 0, 1, 2, 3, and 4 mol%. The glass with 1 mol% added Sb2O3 was confirmed to have the optimal conditions, with an optical transmittance of 80 % or more, a glass transition temperature of 660 ℃, a refractive index of 1.810, and a Vickers hardness of 558. The possibility of its application as an alternative infrared lens material to existing commercial materials capable of GMP processing was confirmed.

Keywords

References

  1. D. Lezal, J. Pedlikova, P. Kostka, J. Bludska, M. Poulain and J. Zavadil, J. Non-Cryst. Solids, 284, 288 (2001).
  2. J. M. Florence, F. W. Glaze and M. H. Black, J. Res. Natl. Bur. Stand., 55, 231 (1955).
  3. R. N. Brown, J. Non-Cryst. Solids, 92, 89 (1987).
  4. T. L. Williams, Thermal Imaging Cameras: Characteristics and Performance, 1st ed., p.86, CRC Press, Boca Raton, Florida (2009).
  5. J. H. Choi, Ceramist, 23, 302 (2020).
  6. D. H. Cha, H. J. Kim, Y. Hwang, J. C. Jeong and J. H. Kim, Appl. Opt., 51, 5649 (2012).
  7. G. H. Hong, H. Kong, J. B. Yeo and H. Y. Lee. J. Korean Inst. Electr. Electron. Mater. Eng, 30, 204 (2017).
  8. K. Kobayashi, J. Non-Cryst. Solids, 316, 403 (2003).
  9. P. L. Higby and I. D. Aggarwal, J. Non-Cryst. Solids, 163, 303 (1993).
  10. K. H. Chung, J. Korean Ceram. Soc., 27, 430 (1990).
  11. J. Y. Cho, H. J. Kim, S. H. Jeong, J. H. Kim and M. J. Lee, Ceram. Int., 49, 34409 (2023).
  12. J. Y. Jo, M. S. Kang and K. W. Chung, Mater. Res. Bull., 43, 361 (2008).
  13. K. Terashima, T. Hashimoto, T. Uchino, S. H. Kim and T. Yoko, J. Ceram. Soc. Jpn., 104, 1008 (1996).
  14. A. R. Cooper Jr, J. Non-Cryst. Solids, 49, 1 (1982).
  15. N. H. You and M. Ueda, Poly. Eng. Sci., 53, 374 (2013).
  16. V. C. S. Reynoso, L. C. Barbosa, O. L. Alves, N. Aranha and C. L. Cesar, Mater. Chem., 4, 529 (1994).