• 제목/요약/키워드: zero voltage switching

검색결과 854건 처리시간 0.034초

Actively Clamped Two-Switch Flyback Converter with High Efficiency

  • Yang, Min-Kwon;Choi, Woo-Young
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1200-1206
    • /
    • 2015
  • This paper proposes an actively clamped two-switch flyback converter. Compared to the conventional two-switch flyback converter, the proposed two-switch flyback converter operates with a wide duty cycle range. By using an active-clamp circuit, the proposed converter achieves zero-voltage switching for all of the power switches. Zero-current switching of an output diode is also achieved. Thus, compared with the conventional converter, the proposed converter realizes a higher efficiency with an extended duty cycle. The performance of the proposed converter is verified by the experimental results with use of a 1.0 kW prototype circuit.

Novel energy recovery circuit using an address voltage source

  • Yi, Kang-Hyun;Moon, Gun-Woo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.416-418
    • /
    • 2008
  • Cost effective and high efficiency energy recovery circuit (ERC) using an address voltage source is proposed. Different from prior ERC, the proposed circuit uses a voltage source to charge a panel and a current source to discharge the panel. As a result, it can be achieved zero voltage switching (ZVS) of switches in H-bridge inverter and zero current switching (ZCS) of switches of the ERC. Moreover, the proposed ERC can obtain high efficiency, high performance and the decrease of the cost and the size.

  • PDF

PPS 제어기법을 적용한 48V-400V 비절연 양방향 DC-DC컨버터 (A 48V-400V Non-isolated Bidirectional Soft-switching DC-DC Converter for Residential ESS)

  • 정현주;권민호;최세완
    • 전력전자학회논문지
    • /
    • 제23권3호
    • /
    • pp.190-198
    • /
    • 2018
  • This paper proposes a nonisolated, bidirectional, soft-switching DC - DC converter with PWM plus phase shift (PPS) control. The proposed converter has an input-parallel/output-series configuration and can achieve the interleaving effect and high voltage gains, resulting in decreased voltage ratings in all related devices. The proposed converter can operate under zero-voltage switching (ZVS) conditions for all switches in continuous conduction mode. The power flow of the proposed converter can be controlled by changing the phase shift angle, and the duty is controlled to balance the voltage of four high voltage side capacitors. The PPS control device of the proposed converter is simple in structure and presents symmetrical switching patterns under a bidirectional power flow. The PPS control also ensures ZVS during charging and discharging at all loads and equalizes the voltage ratings of the output capacitors and switches. To verify the validity of the proposed converter, an experimental investigation of a 2 kW prototype is performed in both charging and discharging modes under different load conditions and a bidirectional power flow.

Zero Voltage Switching을 이용한 저전압 DC/DC 컨버터의 고집적회로 설계 (VLSI Design of Low Voltage DC/DC Converter using Zero Voltage Switching Technique)

  • 전재훈;김종태;홍병유
    • 전력전자학회논문지
    • /
    • 제6권6호
    • /
    • pp.564-571
    • /
    • 2001
  • 본 논문은 휴대용 기기를 위한 고효율의 저전압용 DC/DC 컨버터의 고집적회로에 관한 연구이다. 컨버터의 모든 능동 소자들은 0.65$\mu\textrm{m}$표준 CMOS 공정을 사용하여 단일 칩으로 구현하였다 수종 소자들의 크기를 줄이기 위해서 1MHz의 주파수에서 동작하며 높은 주파수에서 의스위칭 손실을 최소화하기 위하여 ZVS 방식으로 설계하였다. 시뮬레이션 결과 출력 전압이 2V일때 1W의 출력을 가지며 full 부하에서 95%의 효율을 보였다.

  • PDF

위상전이 풀-브리지 DC/DC 컨버터를 이용한 차세대 고속 전철용 Battery Charger에 관한 연구 (A Study on Battery Chargers for the next generation high speed train using the Phase-shift Full-bridge DC/DC Converter)

  • 조한진;이원철;이상석;김태환;원충연
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집 특별세미나,특별/일반세션
    • /
    • pp.623-628
    • /
    • 2009
  • There is an increasing demand for efficient high power/weight auxiliary power supplies for use on high speed traction application. Many new conversion techniques have been proposed to reduce the voltage and current stress of switching components, and the switching losses in the traditional pulse width modulation(PWM) converter. Especially, the phase shift full bridge zero voltage switching PWM techniques are thought most desirable for many applications because this topology permits all switching devices to operate under zero voltage switching(ZVS) by using circuit parasitic components such as leakage inductance of high frequency transformer and power device junction capacitance. The proposed topology is found to have higher efficiency than conventional soft-switching converter. Also it is easily applicable to phase shift full bridge converter by applying an energy recovery snubber consisted of fast recovery diodes and capacitors.

  • PDF

차세대 고속 전철용 Battery Charger 에 관한 연구 (A Study on the Battery Charger for Next Generation High Speed Train)

  • 정한정;이원철;이상석;백진성;원충연
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.321-324
    • /
    • 2008
  • Recently, there is an increasing demand for efficient high power/weight auxiliary power supplies for use on high speed traction application. many new conversion techniques have been proposed to reduce the voltage and current stress of switching components, and the switching losses in the traditional pulse width modulation(PWM) converter. Among them, the phase shift full bridge zero voltage switching PWM techniques are thought most desirable for many applications because this topology permits all switching devices to operate under zero voltage switching(ZVS) by using circuit parasitic components such as leakage inductance of high frequency transformer and power device junction capacitance. The proposed topology is found to have higher efficiency than conventional soft-switching converter. Also it is easily applicable to phase shift full bridge converter by applying an energy recovery snubber consisted of fast recovery diodes and capacitors.

  • PDF

A Novel Zero-Voltage-Switching Push-Pull DC-DC Converter for High Input Voltage and High Power Applications

  • Mao Saijun;Wang Huizhen;Yan Yangguang
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권4호
    • /
    • pp.343-349
    • /
    • 2005
  • This paper proposes a novel zero-voltage-switching (ZVS) Push-pull DC-DC Converter for high input voltage and high power applications. This topology utilizes two switches in series to replace one switch in conventional push-pull converter, and two clamping diodes are introduced. The voltage stress of the switches is the input voltage, and the switches can realize ZVS with the use of the leakage inductance of the transformer. Furthermore, secondary full-wave rectifier with a clamping capacitor is used to eliminate the voltage oscillation and spike of the rectifier diodes due to the reverse recovery. Therefore, the electromagnetic interference is reduced effectively. The operation principle of the proposed converter is analyzed theoretically. The output characteristic, ZVS condition and design principle of the clamping capacitor are discussed. Experimental results obtained from a 270V input 2kW prototype with $95.8\%$ high efficiency confirms the design.

A New Family of Non-Isolated Zero-Current Transition PWM Converters

  • Yazdani, Mohammad Rouhollah;Dust, Mohammad Pahlavan;Hemmati, Poorya
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1669-1677
    • /
    • 2016
  • A new auxiliary circuit for boost, buck, buck-boost, Cuk, SEPIC, and zeta converters is introduced to provide soft switching for pulse-width modulation converters. In the aforementioned family of DC-DC converters, the main and auxiliary switches turn on under zero current transition (ZCT) and turn off with zero voltage and current transition (ZVZCT). All diodes commutate under soft switching conditions. On the basis of the proposed converter family, the boost topology is analyzed, and its operating modes are presented. The validity of the theoretical analysis is justified by the experimental results of a 100W, 100 kHz prototype. The conducted electromagnetic emissions of the proposed boost converter are measured and found to be lower than those of another ZCT boost converter.

Interleaved ZVS Resonant Converter with a Parallel-Series Connection

  • Lin, Bor-Ren;Shen, Sin-Jhih
    • Journal of Power Electronics
    • /
    • 제12권4호
    • /
    • pp.528-537
    • /
    • 2012
  • This paper presents an interleaved resonant converter with a parallel-series transformer connection in order to achieve ripple current reduction at the output capacitor, zero voltage turn-on for the active switches, zero current turn-off for the rectifier diodes, less voltage stress on the rectifier diodes, and less current stress on the transformer primary windings. The primary windings of the two transformers are connected in parallel in order to share the input current and to reduce the root-mean-square (rms) current on the primary windings. The secondary windings of the two transformers are connected in series in order to ensure that the transformer primary currents are balanced. A full-wave diode rectifier is used at the output side to clamp the voltage stress of the rectifier diode at the output voltage. Two circuit modules are operated with the interleaved PWM scheme so that the input and output ripple currents are reduced. Based on the resonant behavior, all of the active switches are turned on under zero voltage switching (ZVS), and the rectifier diodes are turned off under zero current switching (ZCS) if the operating switching frequency is less than the series resonant frequency. Finally, experiments with a 1kW prototype are described to verify the effectiveness of the proposed converter.

A Digital Self-Sustained Phase Shift Modulation Control Strategy for Full-Bridge LLC Resonant Converters

  • Zheng, Kai;Zhou, Dongfang;Li, Jianbing;Li, Li;Zhao, Yujing
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.915-924
    • /
    • 2016
  • A digital self-sustained phase shift modulation (DSSPSM) strategy that allows for good soft switching and dynamic response performance in the presence of step variations is presented in this paper. The working principle, soft switching characteristics, and voltage gain formulae of a LLC converter with DSSPSM have been provided separately. Furthermore, the method for realizing DSSPSM is proposed. Specifically, some key components of the proposed DSSPSM are carefully investigated, including a parameter variation analysis, the start-up process, and the zero-crossing capture of the resonant current. The simulation and experiment results verify the feasibility of the proposed control method. It is observed that the zero voltage switching of the switches and the zero current switching of the rectifier diodes can be easily realized in presence of step load variations.