• Title/Summary/Keyword: zero forcing

Search Result 178, Processing Time 0.025 seconds

Transmission Techniques for Downlink Multi-Antenna MC-CDMA Systems in a Beyond-3G Context

  • Portier Fabrice;Raos Ivana;Silva Adao;Baudais Jean-Yves;Helard Jean-Francois;Gameiro Atilio;Zazo Santiago
    • Journal of Communications and Networks
    • /
    • v.7 no.2
    • /
    • pp.157-170
    • /
    • 2005
  • The combination of multiple antennas and multi-carrier code division multiple-access (MC-CDMA) is a strong candidate for the downlink of the next generation mobile communications. The study of such systems in scenarios that model real-life trans-missions is an additional step towards an optimized achievement. We consider a realistic MIMO channel with two or four transmit antennas and up to two receive antennas, and channel state information (CSI) mismatches. Depending on the mobile terminal (MT) class, its number of antennas or complexity allowed, different data-rates are proposed with turbo-coding and asymptotic spectral efficiencies from 1 to 4.5 bit/s/Hz, using three algorithms developed within the European IST-MATRICE project. These algorithms can be classified according to the degree of CSI at base-station (BS): i) Transmit space-frequency prefiltering based on constrained zero-forcing algorithm with complete CSI at BS; ii) transmit beamforming based on spatial correlation matrix estimation from partial CSI at BS; iii) orthogonal space-time block coding based on Alamouti scheme without CSI at BS. All presented schemes require a reasonable complexity at MT, and are compatible with a single-antenna receiver. A choice between these algorithms is proposed in order to significantly improve the performance of MC-CDMA and to cover the different environments considered for the next generation cellular systems. For beyond-3G, we propose prefiltering for indoor and pedestrian microcell environments, beamforming for suburban macrocells including high-speed train, and space-time coding for urban conditions with moderate to high speeds.

Performance Improvement of Terrestrial DTV Receivers Using Frequency-domain Equalization (주파수 영역 등화를 이용한 지상파 DTV 수신 성능 개선)

  • Son Sang-Won;Kim Ji-Hyun;Kim Hyoung-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4C
    • /
    • pp.351-363
    • /
    • 2006
  • The 8-VSB modulation, the transmission standard for the terrestrial digital television(DTV) of the Advanced Television Systems Committee(ATSC), suffers from multipath fading because it conveys information on the amplitude. To solve this problem, decision feedback equalizers(DFE's) have been commonly used in terrestrial DTV receivers. However, under severe channels, such as a 0 dB ghost channel or a single frequency network (SFN) channel, the DFE shows unstable convergence due to the error propagation caused by decision errors. Instead of unstable time-domain DFE schemes, by proposing a frequency-domain direct-inversion equalization method, we try to guarantee stable equalization and achieve low symbol error rates. To secure the existence of a channel inverse, channel-matched filtering and noncausal filtering are carried out prior to equalization. Simulation results show that the proposed method performs much better than existing DFE schemes in terms of both the stability and the symbol error rate.

A Near Optimal Linear Preceding for Multiuser MIMO Throughput Maximization (다중 안테나 다중 사용자 환경에서 최대 전송율에 근접하는 선형 precoding 기법)

  • Jang, Seung-Hun;Yang, Jang-Hoon;Jang, Kyu-Hwan;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.414-423
    • /
    • 2009
  • This paper considers a linear precoding scheme that achieves near optimal sum rate. While the minimum mean square error (MMSE) precoding provides the better MSE performance at all signal-to-noise ratio (SNR) than the zero forcing (ZF) precoding, its sum rate shows superior performance to ZF precoding at low SNR but inferior performance to ZF precoding at high SNR, From this observation, we first propose a near optimal linear precoding scheme in terms of sum rate. The resulting precoding scheme regularizes ZF precoding to maximize the sum rate, resulting in better sum rate performance than both ZF precoding and MMSE precoding at all SNR ranges. To find regularization parameters, we propose a simple algorithm such that locally maximal sum rate is achieved. As a low complexity alternative, we also propose a simple power re-allocation scheme in the conventional regularized channel inversion scheme. Finally, the proposed scheme is tested under the presence of channel estimation error. By simulation, we show that the proposed scheme can maintain the performance gain in the presence of channel estimation error and is robust to the channel estimation error.

Efficient Detection Scheme for Turbo Coded QO-STBC Schemes (터보 부호와 결합된 준직교 시공간 블록 부호의 효율적인 검출 기법)

  • Park, Un-Hee;Oh, Dae-Sub;Kim, Young-Min;Kim, Soo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5A
    • /
    • pp.423-430
    • /
    • 2010
  • The performances of turbo-coded space-time block coding (STBC) schemes are subject to how soft decision detection (SDD) information are generated from the STBC decoder. For this reason, we have to pay particular attention to estimation of SDD. In this paper, we evaluate the performance of a turbo coded STBC scheme depending on the accuracy of the SDD. Recently, a new quasi orthogonal STBC (QO-STBC) scheme using a noise whitened filter was proposed in order to reduce noise enhancing effect of zero forcing detection process. This QO-STBC scheme was proven to be efficient in computational complexity compared to the other conventional QO-STBC schemes. In this paper, we first present detailed mathematical analysis on the noise whitened QO-STBC scheme, and by using the result we propose the optimum SDD method.

Complexity Limited Sphere Decoder and Its SER Performance Analysis (스피어 디코더에서 최대 복잡도 감소 기법 및 SER 성능 분석)

  • Jeon, Eun-Sung;Yang, Jang-Hoon;Kim, Bong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6A
    • /
    • pp.577-582
    • /
    • 2008
  • In this paper, we present a scheme to overcome the worst case complexity of the sphere decoder. If the number of visited nodes reaches the threshold, the detected symbol vector is determined between two candidate symbol vectors. One candidate symbol vector is obtained from the demodulated output of ZF receiver which is initial stage of the sphere decoder. The other candidate symbol vector consists of two sub-symbol vectors. The first sub-symbol vector consists of lately visited nodes running from the most upper layer. The second one contains corresponding demodulated outputs of ZF receiver. Between these two candidate symbol vectors, the one with smaller euclidean distance to the received symbol vector is chosen as detected symbol vector. In addition, we show the upper bound of symbol error rate performance for the sphere decoder using the proposed scheme. In the simulation, the proposed scheme shows the significant reduction of the worst case complexity while having negligible SER performance degradation.

Achievable Sum Rate Analysis of ZF Receivers in 3D MIMO Systems

  • Li, Xingwang;Li, Lihua;Xie, Ling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1368-1389
    • /
    • 2014
  • Three-dimensional multiple-input multiple-output (3D MIMO) and large-scale MIMO are two promising technologies for upcoming high data rate wireless communications, since the inter-user interference can be reduced by exploiting antenna vertical gain and degree of freedom, respectively. In this paper, we derive the achievable sum rate of 3D MIMO systems employing zero-forcing (ZF) receivers, accounting for log-normal shadowing fading, path-loss and antenna gain. In particular, we consider the prevalent log-normal model and propose a novel closed-form lower bound on the achievable sum rate exploiting elevation features. Using the lower bound as a starting point, we pursue the "large-system" analysis and derive a closed-form expression when the number of antennas grows large for fixed average transmit power and fixed total transmit power schemes. We further model a high-building with several floors. Due to the floor height, different floors correspond to different elevation angles. Therefore, the asymptotic achievable sum rate performances for each floor and the whole building considering the elevation features are analyzed and the effects of tilt angle and user distribution for both horizontal and vertical dimensions are discussed. Finally, the relationship between the achievable sum rate and the number of users is investigated and the optimal number of users to maximize the sum rate performance is determined.

Antenna Placement Designs for Distributed Antenna Systems with Multiple-Antenna Ports (다중 안테나 포트를 장착한 분산 안테나 시스템에서의 안테나 설계 방법)

  • Lee, Changhee;Park, Eunsung;Lee, Inkyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.10
    • /
    • pp.865-875
    • /
    • 2012
  • In this paper, we optimize antenna locations for a distributed antenna system (DAS) with distributed antenna (DA) ports equipped with multiple antennas under per-DA port power constraint. Maximum ratio transmission and scaled zero-forcing beamforming are employed for single-user and multi-user DAS, respectively. Instead of maximizing the cell average ergodic sum rate, we focus on a lower bound of the expected signal-to-noise ratio (SNR) for the single-cell scenario and the expected signal-to-leakage ratio (SLR) for the two-cell scenario to determine antenna locations. For the single-cell case, optimization of the SNR criterion generates a closed form solution in comparison to conventional iterative algorithms. Also, a gradient ascent algorithm is proposed to solve the SLR criterion for the two-cell scenario. Simulation results show that DAS with antenna locations obtained from the proposed algorithms achieve capacity gains over traditional centralized antenna systems.

Simplified Near Optimal Downlink Beamforming Schemes in Multi-Cell Environment (다중 셀 환경에서 적은 복잡도를 갖는 준 최적 하향 빔형성)

  • Yang, Jang-Hoon;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12C
    • /
    • pp.764-773
    • /
    • 2011
  • Despite enormous performance gain with multi-antenna transmission in the single cell environment, its gain diminishes out in the multi-cell environment due to interference. It is also very hard to solve the efficient downlink beamforming with low complexity in multi-cell environment. First, this paper shows that the asymptotically sum rate optimal downlink beamformings at low and high SNR are maximum ratio transmit (MRT) and zero forcing (ZF) beamforming in the multi-cell system, respectively. Secondly, exploiting the asymptotically optimal downlink beamforming, we develop simple two types of near optimal downlink beamforming schemes having the form of minimum mean squared error (MMSE) beamforming obtained from the dual uplink problem. For each type, three different subclasses are also considered depending on the computational complexity. The simulation results show that the proposed near optimum algorithms provide the trade-off between the complexity and the performance.

An Efficient Channel Feedback Method for Zeroforcing Beamforming Based Multi-User Multiple-Input Multiple-Output System (ZFBF 기반 다중 사용자 MIMO 시스템을 위한 효과적인 채널 피드백 기법)

  • Oh, Tae-Youl;Ahn, Sung-Soo;Choi, Seung-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9A
    • /
    • pp.673-678
    • /
    • 2009
  • This paper presents a feedback method for improving the system capacity of MU-MIMO system for downlink channel environments. In a typical conventional feedback method, CVQ, in order to enhance the channel capacity, not only the feedback load is increased but also the quantization of the channel vector is increased, because the channel parameter of each user has to be fed back after quantizing one of the pre-defined N-codebook vectors. In this paper, a novel feedback method is proposed which provides an improved system capacity by transferring the channel state information without increasing the feedback load. Performance of the proposed method is compared to the conventional CVQ method through computer simulations. The simulation results show that the proposed method with 3-bit feedback provides a system capacity comparable to the CVQ method of 6-bit feedback when the number of transmit antennas is 2.

Improvement of Soil Moisture Initialization for a Global Seasonal Forecast System (전지구 계절 예측 시스템의 토양수분 초기화 방법 개선)

  • Seo, Eunkyo;Lee, Myong-In;Jeong, Jee-Hoon;Kang, Hyun-Suk;Won, Duk-Jin
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.35-45
    • /
    • 2016
  • Initialization of the global seasonal forecast system is as much important as the quality of the embedded climate model for the climate prediction in sub-seasonal time scale. Recent studies have emphasized the important role of soil moisture initialization, suggesting a significant increase in the prediction skill particularly in the mid-latitude land area where the influence of sea surface temperature in the tropics is less crucial and the potential predictability is supplemented by land-atmosphere interaction. This study developed a new soil moisture initialization method applicable to the KMA operational seasonal forecasting system. The method includes first the long-term integration of the offline land surface model driven by observed atmospheric forcing and precipitation. This soil moisture reanalysis is given for the initial state in the ensemble seasonal forecasts through a simple anomaly initialization technique to avoid the simulation drift caused by the systematic model bias. To evaluate the impact of the soil moisture initialization, two sets of long-term, 10-member ensemble experiment runs have been conducted for 1996~2009. As a result, the soil moisture initialization improves the prediction skill of surface air temperature significantly at the zero to one month forecast lead (up to ~60 days forecast lead), although the skill increase in precipitation is less significant. This study suggests that improvements of the prediction in the sub-seasonal timescale require the improvement in the quality of initial data as well as the adequate treatment of the model systematic bias.