Browse > Article
http://dx.doi.org/10.14191/Atmos.2016.26.1.035

Improvement of Soil Moisture Initialization for a Global Seasonal Forecast System  

Seo, Eunkyo (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
Lee, Myong-In (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
Jeong, Jee-Hoon (Faculty of Earth Systems and Environmental Sciences, Chonnam National University)
Kang, Hyun-Suk (National Institute of Meteorological Research)
Won, Duk-Jin (Korea Meteorological Administration)
Publication Information
Atmosphere / v.26, no.1, 2016 , pp. 35-45 More about this Journal
Abstract
Initialization of the global seasonal forecast system is as much important as the quality of the embedded climate model for the climate prediction in sub-seasonal time scale. Recent studies have emphasized the important role of soil moisture initialization, suggesting a significant increase in the prediction skill particularly in the mid-latitude land area where the influence of sea surface temperature in the tropics is less crucial and the potential predictability is supplemented by land-atmosphere interaction. This study developed a new soil moisture initialization method applicable to the KMA operational seasonal forecasting system. The method includes first the long-term integration of the offline land surface model driven by observed atmospheric forcing and precipitation. This soil moisture reanalysis is given for the initial state in the ensemble seasonal forecasts through a simple anomaly initialization technique to avoid the simulation drift caused by the systematic model bias. To evaluate the impact of the soil moisture initialization, two sets of long-term, 10-member ensemble experiment runs have been conducted for 1996~2009. As a result, the soil moisture initialization improves the prediction skill of surface air temperature significantly at the zero to one month forecast lead (up to ~60 days forecast lead), although the skill increase in precipitation is less significant. This study suggests that improvements of the prediction in the sub-seasonal timescale require the improvement in the quality of initial data as well as the adequate treatment of the model systematic bias.
Keywords
Seasonal forecast system; soil moisture initialization; land-atmosphere interaction; anomaly initialization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677-699.   DOI
2 Bowler, N. E., A. Arribas, S. E. Beare, K. R. Mylne, and G. J. Shutts, 2009: The local ETKF and SKEB: upgrades to the MOGREPS short-range ensemble predictionsystem. Q. J. R. Meteorol. Soc., 135, 767-776, doi:10.1002/qj.394.   DOI
3 Cohen, J., and D. Rind, 1991: The effect of snow cover on the climate. J. Climate, 4, 689-706.   DOI
4 Dirmeyer, P. A., 2000: Using a global soil wetness dataset to improve seasonal climate simulation. J. Climate, 13, 2900-2922.   DOI
5 Dirmeyer, P. A., 2003: The role of the land surface background state in climate predictability. Clim. Hydrometeorol., 4, 599-610.   DOI
6 Douville, H., 2004: Relevance of soil moisture for seasonal atmospheric predictions: is it an initial value problem? Climate Dyn., 22, 429-446.   DOI
7 Entin, J. K., and Coauthors, 2000: Temporal and spatial scales of observed soil moisture variations in the extratropics. J. Geophys. Res., 105, 11865-11877.   DOI
8 Hunke, E. C., W. H. Lipscomb, and A. K. Turner, 2010: CICE: the Los Alamos Sea Ice Model Documentation and Software User's Manual Version 4.1 LACC-06-012. T-3 Fluid Dynamics Group, Los Alamos National Laboratory, 675.
9 Jeong, J. H., H. W. Linderholm, S. H. Woo, C. Folland, B. M. Kim, S. J. Kim, and D. Chen, 2013: Impacts of snow initialization on subseasonal forecasts of surface air temperature for the cold season. J. Climate, 26, 1956-1972.   DOI
10 Koster, R. D., and Coauthors, 2002: Comparing the degree of land-atmosphere interaction in four atmospheric general circulation models. Clim. Hydrometeorol., 3, 363-375.   DOI
11 Koster, R. D., and Coauthors, 2004a: Realistic initialization of land surface states: Impacts on subseasonal forecast skill. Clim. Hydrometeorol., 5, 1049-1063.   DOI
12 Koster, R. D., and Coauthors, 2004b: Regions of strong coupling between soil moisture and precipitation. Science, 305, 1138-1140.   DOI
13 Koster, R. D., and Coauthors, 2006: GLACE: The global landatmosphere coupling experiment. Part I: Overview. Clim. Hydrometeorol., 7, 590-610.   DOI
14 Koster, R. D., and Coauthors, 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, doi:10.1029/2009GL041677.   DOI
15 Koster, R. D., and Coauthors, 2011: The second phase of the global land-atmosphere coupling experiment: Soil moisture contributions to subseasonal forecast skill. Clim. Hydrometeorol., 12, 805-822.   DOI
16 Lea, D. J., I. Mirouze, M. J. Martin, R. R. King, A. Hines, D. Walters, and M. Thurlow, 2015: Assessing a new coupled data assimilation system based on the Met Office coupled atmosphere, land, ocean, sea ice model. Mon. Wea. Rev., 143, 4678-4694.   DOI
17 Lorenz, E. N., 1982: Atmospheric predictability experiments with a large numerical model. Tellus, 34, 504-513.
18 MacLachlan, C., and Coauthors, 2014: Global seasonal forecast system version 5 (GloSea5): A high-resolutionseasonal forecast system. Q. J. R. Meteorol. Soc., doi:10.1002/qj.2396.   DOI
19 Madec, G., 2008: NEMO ocean engine. Note du Pole de Modelisation, Institut Pierre-Simon Laplace (IPSL), France, No 27 ISSN No 1288-1619.
20 Maidens, A., A. A. Scaife, A. Arribas, J. Knight, C. MacLachlan, D. Peterson, and M. Gordon, 2013: GloSea5: The new met office high resolution seasonal prediction system. EGU general assembly 2013, 7-12 April, 2013 in Vienna, Austria, ID. EGU 2013-7649.
21 Meehl, G. A., and Coauthors, 2009: Decadal prediction: Can it be skillful? Bull. Am. Meteorol. Soc., 90, 1467-1485.   DOI
22 Orsolini, Y. J., and Coauthors, 2013: Impact of snow initialization on sub-seasonal forecasts. Climate Dyn., 41, 1969-1982.   DOI
23 Prodhomme, C., F. Doblas-Reyes, O. Bellprat, and E. Dutra, 2015: Impact of land-surface initialization on sub-seasonal to seasonal forecasts over Europe. Climate Dyn., 1-17.
24 Reichle, R. H., and Coauthors, 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 6322-6338.   DOI
25 Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609-1625.   DOI
26 Rodell, M., and Coauthors, 2004: The global land data assimilation system. Bull. Amer. Meteor. Soc., 85, 381-394.   DOI
27 Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Science Rev., 99, 125-161.   DOI
28 Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 3088-3111.   DOI
29 Stocker, T. F., and Coauthors, Eds., 2014: Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1552 pp.
30 Vinnikov, K. Y., and I. B. Yeserkepova, 1991: Soil moisture: Empirical data and model results. J. Climate, 34, 504-513.
31 Walters, D. N., and Coauthors, 2011: The met office unified modelglobal atmosphere 3.0/3.1 and JULES global land 3.0/3.1 configurations. Geosci. Model Dev., 4, 919-941, doi:10.5194/gmd-4-919-2011.   DOI
32 Wang, B., and Coauthors, 2008: Advance and prospectus of seasonal prediction: assessment of the APCC/Cli-PAS 14-model ensemble retrospective seasonal prediction (1980-2004). Climate Dyn., 33, 93-117.