• Title/Summary/Keyword: yttria-stabilized zirconia coat

Search Result 12, Processing Time 0.022 seconds

Hot Corrosion Behavior of Plasma-Sprayed Partially Stabilized Zirconia Coatings in a Lithium Molten Salt (리튬용융염에서 플라즈마 용사된 부분안정화 지르코니아 코팅층의 고온부식 거동)

  • Cho, Soo-Haeng;Hong, Sun-Seok;Kang, Dae-Seong;Park, Byung-Heong;Hur, Jin-Mok;Lee, Han-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.646-651
    • /
    • 2008
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. It is essential to choose the optimum material for the process equipment handling molten salt. IN713LC is one of the candidate materials proposed for application in electrolytic reduction process. In this study, yttria-stabilized zirconia (YSZ) top coat was applied to a surface of IN713LC with an aluminized metallic bond coat by an optimized plasma spray process, and were investigated the corrosion behavior at $675^{\circ}C$ for 216 hours in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere. The as-coated and tested specimens were examined by OM, SEM/EDS and XRD, respectively. The bare superalloy reveals obvious weight loss, and the corrosion layer formed on the surface of the bare superalloy was spalled due to the rapid scale growth and thermal stress. The top coatings showed a much better hot-corrosion resistance in the presence of $LiCl-Li_2O$ molten salt when compared to those of the uncoated superalloy and the aluminized bond coatings. These coatings have been found to be beneficial for increasing to the hot-corrosion resistance of the structural materials for handling high temperature lithium molten salts.

Effect of Pt on the High Temperature Stability of NiCoCrAlY or NiAl Bond Coat in the Thermal Barrier Coating System (NiCoCrAlY 및 NiAl bond coat를 사용한 Thermal Barrier Coating의 고온안정성에 미치는 Pt의 영향)

  • Ku Seongmo;Kim Gil Moo
    • Korean Journal of Materials Research
    • /
    • v.15 no.6
    • /
    • pp.375-381
    • /
    • 2005
  • High temperature oxidation behavior of thermal barrier coating (TBC) system (IN738 substrate + NiCoCrAlY or NiAl bond coat with or without Pt + yttria stabilized zirconia) prepared by air plasma spray (APS) process has been studied in order to understand the effect of Pt addition to bond coat on the stability of TBC system. Specimens were oxidized in thermal cycling and isothermal oxidation test at $1100^{\circ}C$. The Pt addition in TBC system with NiCoCrAlY bond coat showed a longer life time compared to that without addition of Pt. Pt addition to TBC system is believed to help the formation of more stable thermally grown oxide, $Al_2O_3$, at the TBC/bond coat interface, leading to a longer lifetime of TBC system.

Evaluation of Degradation Characteristics of Thermal Barrier Coating on Gas Turbine Blades

  • Jung, Yongchan;Kim, Mintae;Lee, Juhyeung;Ahn, Jamin;Kim, Kihong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.273-278
    • /
    • 2016
  • In order to evaluate the lifespan of high-temperature parts with thermal barrier coating in gas turbines used for power generation, this study was performed on an 80 MW-class gas turbine exceeding 24 k equivalent operating hours. Degradation characteristics were evaluated by analyzing the YSZ (Yttria Stabilized Zirconia) top coat, which serves as the thermal barrier coating layer, the NiCrAlY bond coat, and interface layers. Microstructural analysis of the top, middle, and bottom sections showed that Thermal Growth Oxide (TGO) growth, Cr precipitate growth within the bond coat layer, and formation of diffusion layer occur actively in high-temperature sections. These microstructural changes were consistent with damaged areas of the thermal barrier coating layer observed at the surface of the used blade. The distribution of Cr precipitates within the bond coat layer, in addition to the thickness of TGO, is regarded as a key indicator in the evaluation of degradation characteristics.

High Temperature Tribology Behavior of 4YSZ Coatings Fabricated by Air Plasma Spray (APS) and Electron Beam Physical Vapor Deposition (EB-PVD) (플라즈마 용사 및 전자빔 물리기상 증착법으로 제조된 4YSZ 코팅의 고온마찰마모 거동)

  • Yang, Young-Hwan;Park, Chan-Young;Lee, Won-Jun;Kim, Sun-Joo;Lee, Sung-Min;Kim, Seongwon;Kim, Hyung-Tae;Oh, Yoon-Suk
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.6
    • /
    • pp.258-263
    • /
    • 2013
  • 4 mol% Yttria-stabilized zirconia (4YSZ) coatings are fabricated by Air Plasma Spray (APS) and Electron Beam Physical Vapor Deposition (EB-PVD) with top coating of thermal barrier coating (TBC). NiCrAlY based bond coat is prepared as 150 ${\mu}m$ thickness by conventional APS (Air Plasma Spray) method on the NiCrCoAl alloy substrate before deposition of top coating. Each 4YSZ top coating shows different tribological behaviors based on the inherent layer structures. 4YSZ by APS which has splat-stacked structure shows lower friction coefficient but higher wear rate than 4YSZ by EB-PVD which has columnar structure. For 4YSZ by APS, such results are expected due to the sliding wear accompanied with local delamination of splats.

Thermal Durability of 4YSZ Thermal Barrier Coating Deposited by Electron Beam PVD (전자빔을 이용한 물리기상증착법으로 제조된 열차폐용 4 mol% YSZ 코팅의 내열특성)

  • Park, Chanyoung;Yang, Younghwan;Kim, Seongwon;Lee, Sungmin;Kim, Hyungtae;Lim, Daesoon;Jang, Byungkoog;Oh, Yoonsuk
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.460-466
    • /
    • 2013
  • 4 mol% Yttria-stabilized zirconia (4YSZ) coatings with $200{\mu}m$ thick are fabricated by Electron Beam Physical Vapor Deposition (EB-PVD) for thermal barrier coating (TBC). $150{\mu}m$ of NiCrAlY based bond coat is prepared by conventional APS (Air Plasma Spray) method on the NiCrCoAl alloy substrate before deposition of top coating. 4 mol% YSZ top coating shows typical tetragonal phase and columnar structure due to vapor phase deposition process. The adhesion strength of coating is measured about 40 MPa. There is no delamination or cracking of coatings after thermal cyclic fatigue and shock test at $850^{\circ}C$.

Fabrication and Characterization of 7.5 wt% Y2O3-ZrO2 Thermal Barrier Coatings Deposited by Suspension Plasma Spray (서스펜션 플라즈마 용사법을 이용한 7.5 wt% Y2O3-ZrO2 열차폐코팅 제조 및 평가)

  • Lee, Won-Jun;Oh, Yoon-Suk;Lee, Sung-Min;Kim, Hyung-Tae;Lim, Dae-Soon;Kim, Seongwon
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.598-604
    • /
    • 2014
  • Considerable research efforts have been explored attempting to enhance the thermal durability of thermal barrier coatings (TBCs) at the high operating temperatures of gas turbines. In this study, the suspension plasma spray (SPS) process was applied to produce TBCs with a segmented structure by using an yttria-stabilized zirconia (YSZ) suspension. Four different experiment sets were carried out by controlling the ratio between surface roughness of the bond coat and feed stock size ($R_a/D_{50}$) in order to examine the effect of $R_a/D_{50}$ ratio on the microstructure of SPS-prepared coatings. When the $R_a/D_{50}$ had a high value of 11.8, a deposited thick coating turned out to have a cone-type columnar microstructure. In contrast, at the low $R_a/D_{50}$ values of 2.9 and 0.18, a deposited thick coating appeared to have a dense, vertically-cracked microstructure. However, with the very low $R_a/D_{50}$ value of 0.05 the coating was delaminated.

Thermal Durability of Thermal Barrier Coatings in Furnace Cyclic Thermal Fatigue Test: Effects of Purity and Monoclinic Phase in Feedstock Powder

  • Park, Hyun-Myung;Jun, Soo-Hyk;Lyu, Guanlin;Jung, Yeon-Gil;Yan, Byung-Il;Park, Kwang-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.6
    • /
    • pp.608-617
    • /
    • 2018
  • The effects of the purity and monoclinic phase of feedstock powder on the thermal durability of thermal barrier coatings (TBC) were investigated through cyclic thermal exposure. Bond and top coats were deposited by high velocity oxygen fuel method using Ni-Co based feedstock powder and air plasma spray method using three kinds of yttria-stabilized zirconia with different purity and monoclinic phase content, respectively. Furnace cyclic thermal fatigue test was performed to investigate the thermal fatigue behavior and thermal durability of TBCs. TBCs with high purity powder showed better sintering resistance and less thickness in the thermally grown oxide layer. The thermal durability was found to strongly depend on the content of monoclinic phase and the porosity in the top coat; the best thermal fatigue behavior and thermal durability were in the TBC prepared with high purity powder without monoclinic phase.

Effects of Healing Agent on Crack Propagation Behavior in Thermal Barrier Coatings

  • Jeon, Soo-Hyeok;Jung, Sung-Hoon;Jung, Yeon-Gil
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.492-498
    • /
    • 2017
  • A thermal barrier coating (TBC) with self-healing property for cracks was proposed to improve reliability during gas turbine operation, including structural design. Effect of healing agent on crack propagation behavior in TBCs with and without buffer layer was investigated through furnace cyclic test (FCT). Molybdenum disilicide ($MoSi_2$) was used as the healing agent; it was encapsulated using a mixture of tetraethyl orthosilicate and sodium methoxide. Buffer layers with composition ratios of 90 : 10 and 80 : 20 wt%, using yttria stabilized zirconia and $MoSi_2$, respectively, were prepared by air plasma spray process. After generating artificial cracks in TBC samples by using Vickers indentation, FCTs were conducted at $1100^{\circ}C$ for a dwell time of 40 min., followed by natural air cooling for 20 min. at room temperature. The cracks were healed in the buffer layer with the healing agent of $MoSi_2$, and it was found that the thermal reliability of TBC can be enhanced by introducing the buffer layer with healing agent in the top coat.

Influence of Subsurface Layer on the Indentation Damage Behavior of YSZ Thermal Barrier Coating Layers Deposited by Electron Beam Physical Vapor Deposition (전자 빔 물리적 증착(EB-PVD)법으로 코팅된 YSZ 열차폐층의 압흔손상 거동에 대한 하부층의 영향)

  • Heo, Yong-Suk;Park, Sang-Hyun;Han, In-Sub;Woo, Sang-Kuk;Jung, Yeon-Gil;Paik, Un-Gyu;Lee, Kee-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.549-555
    • /
    • 2008
  • The thermal barrier coating must withstand erosion when subjected to flowing gas and should also maintain good stability and mechanical properties while it must also protect the turbine component from high temperature, hot corrosion, creep, and oxidation during operation. In this study we investigated the influence of subsurface layer, $Al_2O_3$ or NiCrCoAIY bond coat layer, on the indentation damage behavior of YSZ thermal barrier coating layers deposited by electron beam physical vapor deposition (EB-PVD). The bond coat is deposited using different process such as air plasma spray (APS) or spray of high velocity oxygen fuel (HVOF) and the thickness is varied. Hertzian indentation technique is used to induce micro damages on the coated layer. The stress-strain behaviors are characterized by results of the indentation tests.

Evaluation of Thermal Durability for Thermal Barrier Coatings with Gradient Coating Thickness (경사화 두께를 갖는 열차폐 코팅의 열적 내구성 평가)

  • Lee, Seoung Soo;Kim, Jun Seong;Jung, Yeon-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.248-255
    • /
    • 2020
  • The effects of the coating thickness on the thermal durability and thermal stability of thermal barrier coatings (TBCs) with a gradient coating thickness were investigated using a flame thermal fatigue (FTF) test and thermal shock (TS) test. The bond and topcoats were deposited on the Ni-based super-alloy (GTD-111) using an air plasma spray (APS) method with Ni-Cr based MCrAlY feedstock powder and yttria-stabilized zirconia (YSZ), respectively. After the FTF test at 1100 ℃ for 1429 cycles, the bond coat was oxidized partially and the thermally grown oxide (TGO) layer was observed at the interface between the topcoat and bond coat. On the other hand, the interface microstructure of each part in the TBC specimen showed a good condition without cracking or delamination. As a result of the TS test at 1100 ℃, the TBC with gradient coating thickness was initially delaminated at a thin part of the coating layer after 37 cycles, and the TBC was delaminated by more than 50% after 98 cycles. The TBCs of the thin part showed more oxidation of the bond coat with the delamination of topcoat than the thick part. The thick part of the TBC thickness showed good thermal stability and oxidation resistance of the bond coat due to the increased thermal barrier effect.