Browse > Article
http://dx.doi.org/10.5762/KAIS.2020.21.8.248

Evaluation of Thermal Durability for Thermal Barrier Coatings with Gradient Coating Thickness  

Lee, Seoung Soo (Aeronautical System Center, Defense Agency for Technology and Quality)
Kim, Jun Seong (School of Materials Science and Engineering, Changwon National University)
Jung, Yeon-Gil (School of Materials Science and Engineering, Changwon National University)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.21, no.8, 2020 , pp. 248-255 More about this Journal
Abstract
The effects of the coating thickness on the thermal durability and thermal stability of thermal barrier coatings (TBCs) with a gradient coating thickness were investigated using a flame thermal fatigue (FTF) test and thermal shock (TS) test. The bond and topcoats were deposited on the Ni-based super-alloy (GTD-111) using an air plasma spray (APS) method with Ni-Cr based MCrAlY feedstock powder and yttria-stabilized zirconia (YSZ), respectively. After the FTF test at 1100 ℃ for 1429 cycles, the bond coat was oxidized partially and the thermally grown oxide (TGO) layer was observed at the interface between the topcoat and bond coat. On the other hand, the interface microstructure of each part in the TBC specimen showed a good condition without cracking or delamination. As a result of the TS test at 1100 ℃, the TBC with gradient coating thickness was initially delaminated at a thin part of the coating layer after 37 cycles, and the TBC was delaminated by more than 50% after 98 cycles. The TBCs of the thin part showed more oxidation of the bond coat with the delamination of topcoat than the thick part. The thick part of the TBC thickness showed good thermal stability and oxidation resistance of the bond coat due to the increased thermal barrier effect.
Keywords
Thermal Barrier Coatings; Gas turbine; Thermal Fatigue Test; Thermal Shock Test; Thermal Durability; Thermal Stability;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Hada, K. Tsukagoshi, J. Masada and E. Ito, "Test Results of the World's First $1,600^{\circ}C$ J-series Gas Turbine". Mitsubishi Heavy Technology Review , Vol. 49 No. 1, pp. 18-23, March 2012.
2 M. T. Kim, Y. C. Jung and D. Seo, "In situ deposition behavior of $SiO_2$ on YSZ-TBC-coated IN738LC during a burner rig test". Surf. Coat Technol, Vol. 206, pp. 4539-4545, June 2012. DOI: https://doi.org/10.1016/j.surfcoat.2012.03.061   DOI
3 N. P. Padture, M. Gell and E. H. Jordan, "Thermal Barrier Coatings for Gas-Turbine Engine Applications". Science , Vol. 296, pp. 280-284, April 2002. DOI: https://doi.org/10.1126/science.1068609   DOI
4 A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier and F. S. Pettit, "Mechanisms controlling the durability of thermal barrier coatings". Prog. Mater. Sci., Vol. 46, pp. 505-553, 2001. DOI: https://doi.org/10.1016/S0079-6425(00)00020-7   DOI
5 M. Gell, E. Jordan, K. Vaidyanathan, K. McCarron, B. Barber, Y. H. Sohn and V. K. Tolpygo, "Bond Strength, Bond Stress and Spallation Mechanisms of Thermal Barrier Coatings". Surf. Coat. Technol., Vol. 120-121, pp. 53-60, Nov. 1999. DOI: https://doi.org/10.1016/S0257-8972(99)00338-2   DOI
6 R. A. Miller, "Current Status of Thermal Barrier Coatings-an Overview". Surf. Coat. Technol., Vol. 30, pp. 1-11, Jan. 1987. DOI: https://doi.org/10.1016/0257-8972(87)90003-X   DOI
7 S. M. Meier and D. K. Gupta, "The Evolution of Thermal Barrier Coatings in Gas Turbine Engine Applications". J. Eng. Gas Turbines Power, Vol. 116, pp. 250-57, Jan. 1994. DOI: https://doi.org/10.1115/1.2906801   DOI
8 D. R. Clarke and C. G. Levi, "Materials Design for the Next Generation Thermal Barrier Coatings". Annu. Rev. Mater. Res., Vol. 33, pp. 383-417, Aug. 2003. DOI: https://doi.org/10.1146/annurev.matsci.33.011403.113718   DOI
9 R. A. Miller, "Thermal Barrier Coatings for Aircraft Engines: History and Directions". J. Therm. Spray Technol., Vol. 6, pp. 35, 1997. DOI: https://doi.org/10.1007/BF02646310   DOI
10 S. Bose and J. DeMasi-Marcin, "Thermal Barrier Coating Experience in Gas Turbine Engines at Pratt & Whitney". J. Therm. Spray Technol., Vol. 6, pp. 99-104, March 1997. DOI: https://doi.org/10.1007/BF02646318   DOI
11 R. L. Jones, Metallurgical and Ceramic Protective Coatings, p. 342, Chapman and Hall, London, 1996, pp. 342.
12 Z. Lu, S. W. Myoung, Y. G. Jung, G. Balakrishnan, J. Lee and U. Paik, " Thermal Fatigue Behavior of Air-Plasma Sprayed Thermal Barrier Coating with Bond Coat Species in Cyclic Thermal Exposure", Materials, Vol.6, pp.3387-3403, 2013. DOI: https://doi.org/10.3390/ma6083387   DOI
13 C. Wang, Y. Wang, S. Fan, Y. You, L. Wang, C. Yang, X. Sun and X. Li, "Optimized Functionally Graded $La_2Zr_2O_7/8YSZ$ Thermal Barrier Coatings Fabricated by Suspension Plasma spraying," J. Alloys Compd., Vol.649, No.15, pp.1182-1190, Nov. 2015. DOI: https://doi.org/10.1016/j.jallcom.2015.05.290   DOI
14 D. Song, U. Paik, X. Guo, J. Zhang, T. K. Woo, Z. Lu, S. H. Jung, J. H Lee and Y. G. Jung, "Microstructure Design for Blended Feedstock and its Thermal Durability in Lanthanum Zirconate Based Thermal Barrier Coatings," Surf. Coat. Technol., Vol.308, No.25, pp.40-49, Dec. 2016. DOI: https://doi.org/10.1016/j.surfcoat.2016.07.112   DOI
15 R. Knight, D. Zhangxiong, E. H. Kim and R. H. Smith, "Influence of bond coat surface characteristics on the performance of TBC systems", Proceedings of the 15th International Thermal Spray Conference , ASM Thermal Spray Society, Nice, France, pp.1549-1554, May 1998.
16 H. M. Park, S. H. Jun, G. Lyu, Y. G. Jung, B. I. Yan and K. Y. Park, "Thermal Durability of Thermal Barrier Coatings in Furnace Cyclic Thermal Fatigue Test: Effects of Purity and Monoclinic Phase in Feedstock Powder", J. Kor. Ceram. Soc., Vol.55, No.6, pp.608-617, Oct. 2018. DOI: https://doi.org/10.4191/kcers.2018.55.6.06   DOI
17 G. M. Ingo and T. Caro, "Chemical aspects of plasma spraying of zirconia-based thermal barrier coatings". Acta Mater., Vol.56, pp.5177-5187, Oct. 2008. DOI: https://doi.org/10.1016/j.actamat.2008.07.006   DOI
18 P. G. Tsantrizes, G. E. Kim and T. A. Brezinski, "TBCs on free-standing multilayer components". Proceedings of AGARD SMP Meeting on Thermal Barrier Coatings, Aalborg, Denmark, pp.71-78, October 1997.
19 S. O. Chwa and A. Ohmori, "Microstructures of $ZrO_2$-8 wt% $Y_2O_3$ coatings prepared by a plasma laser hybrid spraying technique", Surf. Coat. Technol., Vol.153, pp.304-312, April 2002. DOI: https://doi.org/10.1016/S0257-8972(01)01686-3   DOI
20 V. K. Tolpygo, D. R. Clarke and K. S. Murphy, "Oxidation-induced failure of EB-PVD thermal barrier coatings", Surf. Coat. Technol., Vol.146-147, pp.124-131, Sep. 2001. DOI: https://doi.org/10.1016/S0257-8972(01)01482-7   DOI
21 S. H. Jung, S. H. Jeon, J. H. Lee, Y. G. Jung, I. S. Kim and B. G. Choi, "Effect of composition, structure design, and coating thickness of thermal barrier coatings on thermal barrier performance", J. Kor. Ceram. Soc., Vol. 53, No. 6, pp. 689-699, Oct. 2016. DOI: http://dx.doi.org/10.4191/kcers.2016.53.6.689   DOI